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Relations, Schedules, and Objective Functions

When allocating scarce resources over time we have to define precedence rela-
tionships among the activities of the project. Those precedence relationships
establish a binary relation m the activity set of the projecl. Together with
the original temporal constraints, the binary relation gives rise to a preorder
in the activity sef. Depending on the type of basie protect scheduling prob-
lamn given and the specific objective funection to be minimized, differont types
of preorders have Lo be vestigated. In this chapter we review and extend
a classification of schedules and objective functions that has been proposed
by Nemmann ob al. {2000}, The classification is based on two basic vepre-

relation-indnced polvtopes. The purpose of the classification is to provide, for
each class of obiective Ametions, a finite set of candidates for opthnal sched-
ules that are characterized ag specifie points of the relation-indnced polytopes
such as minimal peints, local wninmimizers of the objective function, or vertices.

2.1 Resource Constrainés and Feasible Helations

Before we discuss the relationship betwean resource constraints and certain
relations in the set of real activities or events, respectively, we first review
some basic terminology.

Definition 2.1 (Binary relation, preorder, and strict erder). 4 bnary
relation p in {ground) set X is a set of patrs (ir,y) € X x X Relation o in
X with pf D pis termed an extension of p. Ir{p} denotes the transitive hull
of relation p, i.e., the C-minimal frangifive exfension of p in X. A fransitive
binary relation § in sef X is levmed a preovder in X Two clements x,y e X
are referred lo as comparable in preovder 8 of {(x,9) € & or {y,2) € 8, and
incomporable, otherwise. 8 is a complele preovder if (i, 5} € 8 or {(4,1) € 8 for
all 4,7 € X, i+ j. A set U C© X of pairwise incomparable clements is colled
an antichain in 6. Pred®{x) = {y € X | (y,2) € #} s the set of predecessors of
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el r el CX s culled o movimal element of Y in 6 if {y, 2) & 0 dmplics
{w,y} € 6 for ¢lly € Y, v # 2. An drreflexive preovder s asymmelric and
thus represents o strict order. The covering relation cr{8) of strict order 6 4
the Cminimal binary relotion p in X with tr{p) = 8. The precedence graph
of strict ovder 8 is the directed graph G{8) with node set X and are set er{#).

Whon we deal with renewable resources, forbidden sets F are broken up by
introducing precedence constrainbe §; > 5i-+p; betweon real activities 4, € F.
In other words, wo construct o strict order 7 in the set V* of real activities
where {4, §) € # means that activity 7 cannot be started before activity 7 has
been completed. In case of cumulative resonrees, surplus and shortage setg F
are broken up by ntroducing precedence constraints & = .5, between events
i€ VO F and events § € F. Thus, by resolving cumplative-resource condlicts
we establish a reflexive preovder # in event set V¢ whose elements {4, §) say
that event 7 cannot take place before the occwrrence of event 4.

The following two types of preorders will be needed when studying prece-
dence relationships between real activities ov events $hat are induced by a
given schednle.

Definition 2.2 {Interval order and weak order). An énterval order i
sef X ds a strict erder @ dn X for which (w,x}, (y,2) € 0 implies {(w,2) € 8
or {y.2y € 8 for el woa,y, 2 € N. A freflevive) weak order in set X is a
complete and reflegive preovder in X,

2.1.1 Renewable-Resource Constraints

Ire this subscction we consider rreflexive relations in the set V? of real activ-
ities for the scheduding of projects with renewable resonrces. We first define
thie concepts of time-feasible und feasible relations, which go back to the work
of Radermacher {1978} and Bartusch et al. (1988}, In difference 1o the treat-
ment of the material by Neumann et al, (2000} and Neumaun et al. {2003h},
Sect. 2.3, we use relations instead of strict orders, which allows of a unifying
view on resewable-resonree and cnmulative-resonrce constraints,

Definition 2.8 {Thne-feasible and feasible relations). Lef p be an o~
reflezive relation in set V' and let Sp{p) = {5 € Sy | 8; = 5 + p; for all
(7,9} € p} be the set of all time-feasible schedules satisfying the precedence
constraints given by p. Sp{p} is ealled the velalion polytope of p. Relation p is
termed time-feasible of Sp{p) # 8. A Hme-feusible relation p with Sp{p) C 8
is culled feasible,

Ceondition Sp{p) # § means that the precedence constrats Hrom rola
tiont p do not contradict the prosceribed tamporal constraints. I Sp(p) & S,
all schedules sabisfying those precedence constraints are feasible. H p is a fea-
sible relation, then all thne-feasible extensions o O p are feasible as well. A
feasible relation p represents a sofution to the sequencing problem of resource
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allocation, which consists in determining a {partial) order i1 which competing
activities are processed on the resources. The subsequent time-construined
project scheduling of the activitics is achieved by finding some {necessarily
feasible) schedule § € Sp(p}) minimizing objective function § on Spip).

Lei M C &y be a nonempty seb of tlme-feasible schedules. We say that S s
a mingmal point of M if there s ne &7 ¢ M with 5 < 8, where 8 < § mesns
5 < §and 8§ # 5. Relation polytope Spfp) is the set of all thne-feasible
schednles bolonging to the following “expanded” project network N{g). As a
consequence, the corresponding carliest schedule represents the unigue mini-
mal point of polytope Sr{p} {see Subsection 1.1.3),

Definition 2.4 (Relation network). Given relation p in sel V| the sela-
tion nefwork N{p} resulls from project network N by adding, for eoch pair
(6,71 € p, the are (4, §) with weight p;. By D{p} = {dg?-)isjejy’a we denete the
distance matriz belonging to velalion network N{p}.

Bartusch et al. (1988} constder tiwne-feasible strict orders § that are exten-
sions of the slrict order

OD) = {(5,7) € VO x V" | dyy > pi}

in V*® induced by distance matrix 12, We shall call such a strict order ¢ BMER-
Feasible if no antichain U in £ i forbidden. As we shall prove later on, the
antichaing in ¢ are exactly the sets of real activities which, subject to the
precedence constraints from #, can be in progress simmitaneously. That is
wlhy any BMR-feasible strict order is feasible as well. On the other hand,
as will be illustrated in Example 2,30, The reason for this is that n general
S{IHEY) D (U S(D)). In the case where 6;; 2 p; for all {4,7) € E, strict
order # 15 foagible precigely if {6 U G{D)) = QI is feasible.

By applying Theoremn 1.17 we obtain the first basic representation of the
set & of all feasible schedules.

Proposition 2.5 {Bartusch et al. 198B). Let MFR be the set of all G-
minimal Jeasible relations in aclivity set V®. Then {Sp(p) | p € MFR} is «
canering of 5.

Notice that in genersl the asbove covering is not a partition of & becanse two
different time-fersible relations p and o/ may net be conlradicting each other
(Le., SplpU ) = Sp{p) N Sply’) # §). Proposition 2.5 will be useful when
dealing with objective functions that can cfficiently be whnmized on convex
polyvtopes Hke regular or convex functions. In this case, the basic resource-
constrained project scheduling problem (1.8} ean be solved by emnuerating
{snbsets of) relations g € MFR.

i the following we develop characterizations of time-feasible and feasible
relations that allow for efficiently checking the feasibility of a given relation.
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The latter technigue will be used when dealing with the case of vucertain inpnt
data in Section 6.5, where solving a resonrce allocation problems requires the
generation of appropriate feasible relations in the activity set. We shall apply
a similar approach in Section 5.2 for deciding on the feasibility of schedules
when resonirce units are oceupied dinring a seqnence-dependent changeover
time between the execution of consecntive activities,

Proposition 2.6 {Neumann et al. 2000}, Helation p in VY is time-feasible
if and ondy if relation network N{p) does not contain any directed cyele of
positive length.

Proaf. By definition, refation p is thne-feasible exactly if Sr{p) # & Poly-
tope Sp{p) corresponds to the sel of thue-Teasible schedules belonging to
network N{p). From Proposition 1.7 it follows that there is a thue-feasible
schedule for N{p} precisely if N(p) does not contain any directed eycle of
pasitive length, i

As a congeguence of Propogition 2.6, checking ihe {ime-feasibility of p
cann be done in Olnlm + [pi]} thoe by applying Algorithm 1.7 to relation
network N{p) for computing distances dfy, for all ¢ € V. The next proposition
shows how the feasibility of p can be established on tle basiy of distance
matrix D{p). We need the following preliminary lemima.

Lemma 2.7, Let Sy £ 8 and et U G VY be a sel of real activities such that
d? TR p; fm* aH i, j [ U Then there exisis o lme-feastblo schedule S5 with

Proof. Twe activities £, 7 € U necessarily overlap i thme if %7 < p; and
At < pye Now assume that we add, for all 4.7 € U with ¢ # j§, & cor
responding arc {§,4) weighted by 65 = —py + 1 to project network N. We
consider the addition of ene of those arcs (7.4}, diy < p; o1, equivalently,
diy <pp— L haplies diy + 44 < — 1 —pi + 1 =0 Proposition 1.9 then says
that there iIs ne directed cycle of positive length in the resnlting (expanded)
network. Moreover, for all modified distances dy, with g, h € U we have
dgn == gy 4 85 b dagy v dygy - pi T+ dipy Spg— 1 peb T4y = T pg = 150
that property dg, < p, is preserved for all g, h € U. Thus, after the addition
of all ares (4,4} € U x U7 with ¢ £ j there Is no directed cycle of positive length
in the resulting vetwork N'. Proposition 1.7 then yields 8% # § for the set 55
of time-feasible schedules belonging to network N7, Due to the added maxi-
mum time lags, any two activities ¢, 3 € U overlap in thne for cach schedule

8§ & S, he, 1508+ pi [0S, 5, psl £ @ for all 4,7 € UL The Helly property
of intervals then hnplies that the interval Nep|S:, S + p:| diving which all
activities from set U overlap is nonemply for eacli § & &) i

A constructive proof of Lemma 2.7 for the case where no deadline d for the
latest termination of the project is prescribed can be fonnd in Bartusch et al,
{14988},
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Propoesition 2.8 {(Newmann et al. 2003b, Sect. 2.3). Time-feasible rela-
tion p in V? is feasible if end only if for cach mindmal forbidden set ¥ ¢ F,
relation network N{p) contains a directed path of length dﬁ} > p; from some
node 1 € F {0 some node j € F.

Proof. Sufficiency: Let ¢ be a time-feasible relation such that for all minimal
forbidden sets F' € JF, there is a palr {4, ) of activities 4,7 &€ F with dfj > ;.
Fach schedule § € Sp{p) satisfies precedence constraint S; > S5; + p; for
all those pairs {1,7) € B{D{p)}. From Theorem 1.17 it then follows that all
schedules § ¢ Sy(p) are resource-feasible. Thus, with Sr{p} € Sr we have
DESP PG S NSEyp= 8.

Neecessity: We assume that there is a forbidden set F with d,‘f-; < p for
all .7 € F. Then from Lemma 2.7 it lollows that there exisis a schedule
S e Sp(p) for which all activities ¢ € F overlap in time. Thus, § 18 not
resource-feasible and Sr{p) & S, which contradicts the feasibility of rela-
tion p. il

The following theorent 8 a direct consequenee of Proposition 2.8.

Theorem 2.9, Time-feasible relation p in V*® iz feasible if and only if neo
anfichain in sirict order ©{D{p)) is forbidden.

Proof. I/ s an antichain i G(DH{p)) exactly if d‘;j < p for all i,7 & €.
Proposition 2.8 says that p Is feasible i and only i vo antichain in &(D{p))
is a minimal forbidden set. Obviously, this is true exactly i no antichain is
an {arbitrary} forbidden set because any forbidden antichain U would embed
some minitmal forbidden subchain U ¢ U, il

Theorent 2.9 immplies that the feasibility of a thne-feasible relation p can
be verified by finding, for each & € R?, 2 maximmum-weight stable set Uy in
the precedence grapl G{8) of strict order 8 = @{D{p)} with weights i for
nodes ¢ € V*. Siuce G(#) is a transitive directed grapls {see, e.g., Bang-Jensen
and Gutin 2002, Sect. 1.8), such a set Uy can be determined efficiently by
computing a minimum (s, ¢-flow ¢® in a flow network Gi{0) arising from
G{0} by adding two nodes s and ¢t and arces {s,¢) and {J, £} for sources ¢ and
sinks j of G(f) and where lower node capacities ry for nodes £ € V' have to be
observed (cf. Kaerkes and Leipholz 1977 and Mohring 1885}, This can be done
in O{n®) time by two applicatious of the FIFO prefiow push algoritlim for the
maximum-flow problem with npper arc capacities {see, e.g., Almja et al. 1983,
Sect. 7.7, or Bang-Jensen and Gutin 2002, Sect. 3.9). p is feasible precisely if
for each & € R, the minimum-flow vahie ¢{u®) and thus the weight Yo cu, Tik
of stable set Uy 13 less than or equal to resource capacity Hy.

Ezample 2.10. We consider a project with four real activities and one renew-
able resource. Figure 2.1a shows the relation network N{p) belonging to strict
order p = {(1,2)},{3,4)}, where nodes £ € V* are labelled with durations p; on
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the top and resource requirements r; in boldface on the bottom. The resource
capacity is 2 = 2. There are five minimal forbidden sets {1, 2}, {1, 3}, {1,4},
{2,4}, and {3, 4}. p is not BMR~feasible because antichains {1,3}, {1,4}, and
{2,4} are forbidden sets. The strict order § = @(D(p}) induced by distance
matrix D{p) equals {(1,2),(1,3),(1.4),(2,4},(3,4}}. The corresponding How
network G(#) is shown in Figure 2.1b. Each node i is labelled with lower node
capacity r; and each arc (i, §) is labelled with minimum flow us; on (4, §). A
maximurm-weight antichain in @ is U = {2, 3} whose weight rg +r3 =2 < R
equals the minimum flow value ¢(u). Thus, strict order p is feasible.
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Fig. 2.1. Difference between feasibility and BMR-feasibility of strict orders: (a) re-
lation network N{p); (b) minimum (s, #)-flow in nctwork G{(?)

We now turn to strict orders 8 in V* that are given by the precedence
relationships induced by some schedule S,

Definition 2,11 (Schedule-induced strict order). Given a schedule S,
strict order 0(S) = {(i,4) € V¥ x V* | §; = S; + pi} is the schedule-induced
strict order which corresponds to the precedence relationships established by S.
The relation polylope Sp(8(S)) of 8(S) is called the schedule polytope of S,
and the relation network N(6(S)) is called the schedule network of 5.

Schedule-induced strict orders #(.S) belong to the class of interval orders.
This can be seen as follows. Let S be some schedule and let (g, k), {4, j) € 8(S).
If (i, h) ¢ 0(S), then S; > S; +p; > Sy > S, + pg, Le., (g.7) € 6(S}.

By Definition 2.3 we have

Sr(p) = {5 € 8¢ | 6(S) 2 p} (2.1)

If schedule § is time-feasible, S3(6(5)) contains S. If schedule S is feasible,
we have S¢{6(S)) € 5. The reason for this is that all schedules §7 € Sp(6(S))
satisly €(5") D 8(S) (compare (2.1}) and thus each active set A{S’,#'} with
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<t < dis asubset of some active set A5 ) where § < £ < d. This proves
the following proposiion.

Proposition 2.12 (Neumann et al, 2000}, Strict order 6(5) induced by a
time-feasible schedule S ds feasible if and only if schedule S 45 feasible.

Notice that for a time-feasible schednle S, strict order #{5) represents the
C-maximal relation wliose relation polyvtope contains S, This can eastly be
shown by assaming the existence of some relation p D 8(5) with § € Sr{p).
Then relation p contais a pair (7,5) € 6(5). That is, we have §; < 8 + py,
which contradicts the assumption § € Sp{p). The latter observation implies
the following statemoert.

Proposition 2.13. Foch Comazimal feasible velation is induced by some fea-
sible schedule.

The relation polytope Sp(8) of some strict order 8 is the set of all time-
feasible schediles rducing an extension of 8. The set of all schiedules jnduce-
tng # is termed the equal-order set of 4.

Definition 2.14 (Equal-order set). Let § be some schedule-induced striet

all time-feasible schedules inducing sirict order 8.

Houalorder sets represent differeneces of sehedule polytopes and thug are
generally nob closed. If 6 i an Ceomaximal time-feasible striet order, we
have ST {0} = Sr{#}, and &p(f) ¢ Spld), otherwise. Equal-order sets arc
convex becanse every schedole S on a line segment joining two schedules
5,8 & SF{f} induces strict order 8. The concept of cqual-order sets leads
to the second basic representation of the set S of all feasible schedules.

Proposition 2.15. Let STO be the set of all feasible schedule-induced stried
orders. Then {85(8) | 6 € STO} s a partition of S.

We will refer to this representation of & whern dealing with resonree levelling
problems, where the objective function is regular or concave on equal-order
sets amd this can be minimized by investigating minimal points or vertices,
respectively, of equal-order sets. The following proposition shows that this
corresponds Lo emumerating minimal points or vertices of schedule polytopes.

Proposition 2,16, For o given project, the set of oll minimal points {resp.
pertices} of equal-order sels coineides with the set of oll minimal points (resp.
vertices) of schedule politopes.

Proef. We show tlie coincidence of the vertex sets. The same reasoning can be
applied to minimal poirts, Let S be g vertex of some schedule polytope Sp(#).
Then § is a vertex of equal-order set SF{H(5)) as well because S € SF(6(S))
and SFE(S)) © S7{f). Now let § be a vertex of some equal-order set Sp(6}.
Then SF{#) = Sr(B(S1)\ (UpzeS7(p)). Since set UnpS7{p) is closed, 5 must
be a vertex of Sp(BL5)). 0
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2.1.2 Cumnulative-Resource Constrainss

in this snbsection we are concerned with relations establishing precedence
relationships between the events of a projeet with cunmlative resonrees. The
concepts of time-feasible and feasible relations are defined m analogy to (Liine-)
feasibie relations for the case of renewable resources,

Definition 2.17 (Time-feasible and feasible relations). Let p be a rela-
the relation polytope of p. Relotion p is lermed t'f{;rrz.g-l-l-:fea-sine i Sr{m £0. A
time-feasible relalion p 45 called feasible if Sp{p) C 5.

A feasible relation in set V° defines precedence constraints between the
events from sel VY which are congistent with the temporal constraints and
which ensure {hat all schodules S € Sp{p) are feasible. The concepts of relation
network N{p} and corresponding distance matrix D{g) are defined as for strict
orders,

D)= {{i,/) € V" x V* | dy = 0}

denotes the reflexive preorder in sel V*° indnced by distance matrix D,
Theorem 1.28 provides the fitst relation-based representation of the & of
all feasible schedules,

Proposition 2,18, Lelt MFR be the set of all C-minimal feasible relations
i event set VO, Then {Srip) | p € MFRY is a covering of 8.

Again, the covering of & by relation polytopes is generally not a partition.

As for relations i set V¢, we investigate how the feasibility of a given
relation in the event set can be checked efficiently. We need two preliminary
lemmas, The first lemima shows that any event set U ¢ V* arising from the
wiion of predecessor sets in roflexive preorder @{) can be an active sef.,
The second lemma states that i not sll minimal forbidden sets are broken
up by precedence constraings induced by distance matrix 1), then there exists
a forbidden set satisfying the conditions of Lemma 2.19, whicly huplies that
there are time-feasible schedules which are not resource-feasible.

Lemma 2,19, Lel Sy # § and It U C V© be a set of events such that for all
ih,ie Ve withdy 20, j €U implies i € U, Then there exists o time-foasible
schedule 5 with A(5. &) = U for some £ > .

Proof. Weselect some j € U withdy; <0foralld € U, eg., a maimal clement
of U in reflexive preorder @), Sinee set 7 is finite, such a maxiiual element
always exisis, Event ¢ € U wecessarily oceurs no later than § if d{?*” = 0, and
ovent 7 ¢ U wust ocour after 73 d}?“‘” > 0. Buppose that project network N
s expanded by adding an are {4, 7) with weiglt & = O foreach i e U, i £ j
and by adding an are {5,4) with weight 8 = 1 for cach ¢ € U. In what follows
we prove that the resulting network N7 does not contain directed cyeles of
positive length. Event j has been chosen such that (1) d;, <G forall he U.
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Moreover, from the definition of set U it follows that (2) dg < ~1 for all
g ¢ U, h e U. We first consider the addition of one arc {1, 7} with ¢ € U,
Since (1) provides dyy < 0, it follows frem Proposition 1.9 that o directed
evele of positive length Is created. Next we show that the updated distance
matrix £ still satisfies mequalities (1} and {2). Obviously, adding {7,7) does
not change any distance dj, with 2o € U sinee from {1) we have dy; -8, 4 djp <
040+ dyp = djp. For distances dg, with g ¢ U and i € U that are modified
when calling Algorithm 1.3 we have dyp, = dpy + 0y +djp < —1+0 4+ 0= 1
because of (1) and {2). Now coucsidor the addition of one are (7,1} where
ig U. {2 provides dj; 4+ di; < 14 {~1) = 0, and thus none of the created
directod cyeles has positive length, By ap}.ﬁymgﬁ {2} we obtain the inequality
dip = dyy + 05+ dip SO+ 1 4 (1) = 0 for the modified distances dy, with
he U, From {2) Is also follows that dgy = dgj -+ ds -+ din < -1 +1—-1=—1
for the modified distances dyp with ¢ ¢ U and ke U,

Thus, we can introdiee a mininuim time lag d;;f-?’-“- =Hforallicl i+
and a mipimn thne lag d}ﬂ?’;”‘ me ] for all € @ U sucly that the reduced
set S of thne-feasible schedules belonging to expanded project network N’ is
nonemply. Since all events ¢ € U occur before or at Lhe same thine as 7 and all
events ¢ € U must be scheduled {strietly) later than 7, the active set A(S, 55}
at thne S5 coincides with set U for all schednles 5§ € S5 3

Lemm‘i 2.20. If there ?s‘ a mindmal k-surplus set F' & Fk with diy < O for all

eVE NP jeFn VT or a minimal keshortage set F € Fiwith dy; < 0

fo'r aih’ eVEANF, je 1* NVE, then t}w?é* eists o forbidden set F' for which
PR O ?m;u{?{*» te B foralli,je V‘ UVE with dy; = O

Proof. Let F be a minimal k-surplus set with di; < O for all i € V& \ F,
je Fo V"Ié' We construct surplus sel F' as follows. 'Wc first delete all
i € Ve ﬂif trom f’ fer w udz d%} < 8 f{;z a, Ej f“ ] V‘ ‘)imc for none of
dw; < 0 foz all ¢ e h \F’, g (’ F’QV( Aft,e: ti:(, {ioimon {}f (,\rmiss i zt imida
that for any A € F’ 11:{,39 isgome & F'n V“ with dp; > 0. Now consider
distances dzh foric VS \Fand he V¥ F’ For given h e V& NF' Jet
je P Vk I;{\ an event such that day 2 6. (1) provides 0 < di; < dy, + diy
for all i & VF L F, which toget Lier with dyy; > 0 implies dj, < 0. Thus, we
have (2} d.z-h < Oforallie Ve \F" he Frave .

Next, we. add all 7 € 1/& WE e FYOofor wiz:{h dip = 0 for some
ile rﬂ/k csothat (3) dy; < Oforall g € V“ VEL e FTn V‘ . Let
i be one of the added events and let 5 ¢ FY V‘,_’ " be au overt bmh that
diy = 0. From {1} it follows that 0 > dyr > dyy +djy for all i € ViE \ F
Due to d;; = 0, this implies di; < 0 for all ¢ € V& \ F", and thus property
{1} 18 pres,{-rvuf The validity of property (2} is :zot affected by addmff events
je v VI to I either. Finally, consider distances dys, for g € V“ N F and
he F’ NVE Forgiven he POV et je F'n V‘” be an {,V{‘:zt such that
dy; = 0. Using (1) we have 0 > dy; 2 don + g, thch then zmpiws don < 0,
Thus, it holds that {4) dy, <G forall ge VE \F', he F'nVE
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The resulting set F¥ is o surplus set E}emu% it arises from F by deleting
events i € V¢ and adding events § € V¢ . Moreover, from (1) 1o {4) we have
dij < O for all 4 ¢ F' and all § € F', which proves the assertion. The case of
a nnimal beshortage set Foean be dealt with amslogonsty, |

The next proposition, which translates the statement of Proposition 2.8
to the case of enmulative resources, characterizos the feasibility of relations
on the basis of relation network N{p).

Proposition 2.21. Tine-feasible relation pin V® is feasible if and ondy if for
cach minimal k-swrplus sct ' € F7, relation network N{p) contains a divee tfd’
path of length d; 2 0 from some node i € VENF tosomenode je I”%if”
and for cach minimal k-shortage set F € F7, relation ?wiwork N{p} contuins
a directed path of length df; > 0 from some node @ € VE N F to some node
jefFnvy

FProof. Sufficiency: Let g be a time-feasible relation satisfying the conditions
of Propoqition 2.21. Since for each schednle § € Sp{p) it holds that S; = §;
for all 4,4} € S(D{(pY), Theorvem 1.28 hnplies the resource-feasibility of all
schedules § € Sp{p). This weans that Sp(p) C S and thus Sy{p) ¢ S.

Neeessiby: We assumne that for sowe resomrece & € RY, there s a k-surplis
set Fsuch that &, < Oforalli € VP \F, j ¢ Fn Vk . Lentma 2.20 then
provides some surplus set FY for which Lemma 2,19 ostablishes the existence
of a tinre-feasible schedule 8 such that A(S,1) = F' for some £ > 0, ie.,
Sripl €S, [

Now we are ready to prove the connterpart of Theorem 2.9,

Theorem 2.22. Tome-feasible relafion poin V° 18 feosible if and only if no
unton of predecessor sels in QLD(p)) 4 forbidden.

Proof. Sufficiency: Let g be a thoe-feasible relation for which no wdon of
predecessor sets in @((p)) is forbidden. U is 2 union of prodecessor sets in
O(D{p)) precisely if for all 4,7 € V¢ with df; 2 0, j € U implies ¢ € U Since
there does not exist sny surplus set I Wzth f}u‘ latter property, Lemma 2.20
inplies that for each mnnmdl surplus set F € FI, there are two events
PEVE \NFand j € FD V‘ such that df; > 0. Symmetrically it holds
that for each minimal shortage set I' € 7, there are two events ¢ € V;:3+ Y
and 7 € FOVE with flﬁj = 0. Proposition 2.21 thewr establishes the feagibility
of p.

Nevessity: For any wdon U of predecessor sets in @{83{p})}, it follows from
Lemma 2,19 that there exists a schedule § € Sy{p} with A{S, 1} = U for some
£ =8 H U is a forbidden set, sehedule 8 i not resource-feasible, which means
that Sp{pl € &, ol
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Next we discuss how the feasibility of a time-feasible relation p can be
checked I polynemial time by using Theorem 2.22. The statement of the
theoremy can be reformulated in the following way: Thne-feasible relation p
in V€ is feasible precisely If for no 7 € V© there is a forbidden union U of
predecessor sets in & = G{D{p)) containing § as maximal element of U in @
{compare proof of Lemnna 2.19). For given § € V¢, such a set ¥ 18 defined by
properties {(Nic U mpliess hec Ut all () e 6, () e U, and (3) 5 is
a maximal clement of U in 8, le., for all ¢ € U, (4,4} € ¢ hoplies {i, §) € 6.
The latter condition is equivalont to ¢ ¢ U for all 4 @ V¢ with (4,4} € § and
(7, j} ¢ #. Now let &, be s binary decislon variable indicating whether or not
event 7 € ¥V is contained in U. Then we have {1} xp = a; for all (h.i) € 6,
(2) oy o= 1, and {3) o; = 0 for all i € V* with (§,4) € 8 and (i,7) ¢ 0. The
set I belonging to incidence vector @ = {#;)iev+ is forbidden exactly if for
some k € RV, 3 .y rip < [y or 30 i > By This, the problem of testing
the feasibility of p can be solved by verifving, for each event § ¢ V*® and each
resauree & € RY, whether or not there exists a binary vector o satisfying
constraints {1) to {3) such that }:NEV“- ri®; 08 less thay safely stoek J or
greater than storage capacity My, For given event j and resonrce k, checking
whether the storage capacity of & might be violated at the ocenrrence of j can
be achicved by solving the following binary program.

Maximize Z Pand
&ei’e

subject 10 23 20 (B} €8 hst4) {1)
B=0  (EVei(0€0 (i) L0 (3)
e {01} (ieV"?) (1) |

The coefficient matrix of constraings {1} colncides with the negative transposed
incidence matrix of the directed graph Gy with node set V® and arc set
g\ ir 14 e Vol That is why the coefficient matrix of constraims (1) ta (3)
is totally unimodular, and the integralily condition {4} for variables @; can be
replaced with § < @& < 1 (¢ € V) As a consequence, problem {2.2) can be
formulated &y a lineasy program, In the sequel, we show that the dual of thig
Huear program represents a mininoin-flow problern.

Let £ € V® be some predecessor of 7 in 8. Then it fellows from {1} and
(2} that o; = 1. Conversely, let 7 be predecessor of some £ € V® in # with
(i, 4) & 8. Then {3) implies that o; = 0. The variahles z; with fixed valne 1
or O can be eliminated as follows. ¥ ;== 1 because (4, ) € #, the trausitivity
of reflexive preorder # provides {h,j) € # and thus @y, = 1 for all (A4} € 6.
Symnetrically, assnme that z, = 0 becavse {7,h) € ¢ and (I, §) ¢ 4. Then
the transitivity of # implies that () € fand {{, Y ¢ fand thus by (B a; =0
for all {h,4) & 6. Honee, constraint {1} can be restricted to variables =, for
which {7, 7} ¢ # and variables xy, for which {j k) € ¢ or {h, j} € §. Otherwise
we would have xp, = 1 or 2; = 0, which implies {1}, For those variables
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and zp, we can furthermore assume that { j iy & 8 and {h, ;} ¢ # because
else again @y = 0 or 2, = L Now let Vi = {i € V| (,9),(j,4) ¢ 8} be
the sel of all events ¢ {or which the va,hzo of ;i not izxul in ddwm(,(, Then
constraint {1} necds only be considered for pairs (h,4) € & with & +# ¢ and
hi g V; Vi s the set of ali ig Ve that are mcom;mmb ¢ wztiz } m 0 Wo

pamcuiar 1 e Vu+3 = ﬁ? BV i = 9(”% (V5 x V;) we denote iilé, bzzb -pr (,ozde
of § mduwd oy set VL Weo 3L<m1 the f{)iiowmg, statement of problem (2.2} as
a linear prograan, where the additive constant LU ee Tik 15 omitted 1 the
objective function.

. . L,
Maximize 2 PRty

eV
subject to wp, ~ 2 20 {{hd) e 8 k)
0<m sl (eV))

(2.9)

Now let ¢ and ¢ be a sowrce and a sink fo be added to divectod graph Gy
By G = (V. 0;) where Ve VEU{s, 1} and 0 1= 8;U({s} x VEYU(V > {£})
we denote the directed graph timt results from Cr % by adding ares {s,4) and
(4,8} for all nodes ¢ € V. The dual of (2.3) can be formnlated as the following
winimune-flow problem i (/5 with supplies ry; at nodes { € V}.“‘-, where ¢/ {u)
denotes the value of flow

Minimize ¢ {u) = E Thyy

'&.é:":");"
subject to Z thip — Z up =i (€ V) (2.4
(L.h)el; hati (R Ayl rhytid
upg 2 O ({h,iye 8y h#1)

Problem (2.4) can be solved i O{n®) thme Ly first substitnting supplies ry, at
nodoes £ nto appropriate upper arc capacities {see, e.g., Bang-Jonsen and Gutin
2002, Section 3.2) and then solving the minimum-flow problem with vanishing

supplies {cf. Subsection 2.1.1). Let &% be some flow solving minimum-flow
problem {2.4). Then the optimal objective Dimction value for problem (2.2)
cgnals Z(«;,,;‘)ef? x + & (@), which is equal to the maximum inventory level
i resonree & ab the occurrence of event j.

For testing whether the nventory might fall below the safety stock, we
golve the minimum-flow problem where supples 7, ot nodes ¢ £ V;-‘* are re-
placed with —ry,. With &/ designating a corresponding mivimam (s, £)-flow,
the optimal objective function value for (2.2} with “Minimize”™ instead of
“Maximize” equals E(«;, s ik~ o (g;g'*”“)t whiech coincides with the minhimon
inventory level in resowrce & at the occonrrence of event j. p is foagible if for
all events 7 & V' and all resources £ € R7Y,

{i,7168
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In sun, checking the feasibility of a relation p takes O(|R7|n?) time (recall
that the time-feasibility of p can be verified in O(nfm + |p{]) time).

We illustrate the verification of feasibility for a relation by considering an
example.

Ezample 2.23. Figure 2.2a shows a project network with five cvents and one
cumulative resource for which we assume a safety stock of B = 0 and a storage
capacity of & = 2. The node labels provide the respective resource require-
ments. We consider the empty relation p = @. The reflexive preorder induced
by D(p) = D is 8 ={(0,1),(0,2),(0,3),(0,4),(1,4),(2,3),(2.4),(3,2), (3,4)}
U {(#,4) | ¢+ € V*}. When checking against the storage capacity for event
j = 1, we obtain the flow network Gy depicted in Figure 2.2bh, where nodes
i € V° are labelled with supplies 7;. In the minimum (s,t)-flow %!, one unit
is shipped from node 3 to node 2, and thus the minimum flow value ¢! (')
cquals 0 and E(A 1yes r; + (ﬁl) = g+ r; + 0 = 2. Figure 2.2¢ shows the
fow network Gy = Ga b(,lonﬂmg to cvents 7 == 2 and § = 3 with a mini-
mum flow % =7 of value ¢*(7%) = ¢*(@°) = 2 and 3, 4o + ¢* (@) =
Yumesti + @) = ro+r2+r3+2 = 2. By inverting the signs of
the supplies, we obtain the minimum-flow problems for testing against the
safety stock. The corresponding flow valucs are ¢'(ul) = 0 and ¢?(u?) =
& (u?) = 0. Accordingly, we have Yinesi— ¢ (@) =ro+r1 —0=2and
2oi2eeTi— #*(u?) = Y GaesTi— & {u?) = rg+r9 473 ~0 = 0, which shows
the feasibility of rclation p.

(a) = (h) i
e 1} " 025 0
2 o W e AT
9 __1\9 \j/ () U\l_LI '[]' e \_t_/"
=) (2} (4 T~
e e SR 2 -
NG g 07 1
™ ] (e)
\{ 4 ‘
1 &'+ — @
Gz a S

Fig. 2.2, Verification of feasibility; (a) project network; (b) minimum (s, ¢)-flow in
network Gi; {c) minimum (s,t)-flow in network Ga = Ga

We close this subsection by considering reflexive preorders in set V¢ that
are induced by some schedule. As we shall see, the results for schedule-induced
strict orders in set V' carry over to schedule-induced reflexive preorders in
set V=,

Definition 2.24 (Schedule-induced reflexive preorder). Given a sched-
ule S, reflexive preorder 6(S) := {(i,j) € V* x V¢ | 8; = S;} is the schedule-
induced reflexive preovder which corresponds to the precedence relationships
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established by S. Sp(8{S1) is again called the schedule politope of schodule S,
and N{B{5Y) is the schedule network of S.

Prue to their completeness, schedule-induced reflexive preorders 8(S) are
refiexive weak arders. Propasition 2.12 sayving that #{85) is feasible precisely if
5 is feasible also applies Lo schedule-indneed reflexive preorders. Analogonsly
to Proposition 2.13 it can also be shown that the Cemaxiinal feasible relations
inset V' are indneed by feasible schedules. Let € be some schedule-indnced re-
again denote the set of all thne-feasible schedules indncing 8. Similarly to the
case of renewable resonrees, set § of all feasible schedies can again be repre-
sented as the union of nonintersecting eyual-preorder sets,

Proposition 2.25. Let STP be the scb of all feasible schedule-induced reflex-
iwe preovders. Then {SF(0) 18 € STP} is a partition of 8.

Agaln, It can be shown that each minimal point {resp. vertex] of an equal-
preorder set is a minimal pobt {resp. vertex) of some schedule polytope and
vice versa (see Proposition 2.16}.

2.2 A Classification of Schedules

in machine and project scheduling without maximurm time Jags, different finite
sets of minimal-poiut schedules have been used for the optimization of regular
objective functions {see, e.g., Baker 1974, Sect. 7.2, for a study of pondelay, ac-
tive, and semiactive schedules bn rpachine schiednling and Sprecher of al. 1985
for the generalization of those cancepts to project scheduling with renewable
resources}. Based on the feasible relations disenssed in Subsection 2.1.1, the
classification of Sprecher et al. {1983} has been extended by Nammam et al
{2000] 1o project scheduling problems with general ternporal constraints and
nonregilar objective Hmctions, This section refers to the latter dassification
af schedules.

All resonree allocation methods discussed in this book are based on ane of
the two basic representations of set &) either as a covering by relation poly-
topes or as partition by egnal-preorder sets {where the term equal-preorder
set may also designate an equal-order set). The schedules to be dealt with in
Subsections 2.2.1 and 2.2.2 refer to the first and to the second representations,
respectively.

2.2.1 Global and Local Extreme Points of the Feasible Region
Let M ¢ Sy be 2 nonempty set of time-feagible schednles, § € M s a

(plobal}) extreme point of M i there are no two schedules 57, 87 € M such
that S = a8 4 {1 - al8” for some 6 < o < 1. If M is o polytope, each
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extreie point is a verter of A and vice versa. We say thut S € M is a local
exirerne potni of M i § is an extreme point of M 0 B.(5) {or some ¢ > 0,
whore B.{S) = {8 ¢ R4 |8 - Slla < ¢} is the ball of radins ¢ around §
in R*42, Recall that § € M is a minsmal point of M if there is no schedule
8 e Mwith 87 < 8. We notiee that a minimal point of M need not represent
a local exireme point of M. As we will see later on, cacli minimal peint of a
relation polytope M = Sz(p), however, is a local extreme point of M.

Definition 2.26 {Active, stable, and psendostable schedules), 4 (fea-
sible} schedule 5 is colled active, stable, or pscudostable +f S is a minimal
point, on extreme poind, or o local extreme poind, respectively, of §. AS, 88,
and PSS denote the sels of all active, all stable, and ol pscudostable sehed-
wules,

Active schednles have been introduced by Giffler aud Thompson {19603 for
solving open-shop problems with preecdence constrabits anong operations
aud regular objective fnctions. I shop-floor schediding, there s a2 one-to-
one correspondence between job sequences on the machines and semiactive
schedules, for which no operation can be processed earlier without changing
the job sequences. Those seiiactive schedules (as well as their analognes in
project scheduling) are precisely the minimal points of components of &, and
avery active schedule Is sentactive,

Since each active, stable, or psendostable schedule is a vertex of some
relation polytope, the sets AS, 85, and PES are finlte, Newmann et al. {2000}
provide an example of a project for which there s an active schedule that is
not stable. However, each active schedule is psendostable, which can be seen
as follows. Assune that there exists some schedule S € A4S\ PSS, Since
5 is not psendostable, wo can find an open line segment € passing throngh
& that totally belongs to &, The represontation of & as a union of finitely
many polyiopes implies that £ can be chosen such that all polmts on £ are
boundary points of 8, L.e., £ C 8S. With z € [~1, 1" being the direction of
£ C S+ Rz, the minimality of S in & tmplies that z ¢ [0, 11712, 1t then follows
fromn £ € 88 that all schednles on € are minhinal points, which contradicts
the Huiteness of AS. Fignre 2.3 sununarizes the relationships between the
schedule sets introduced,

In Newmann et al. {2000} i is shown by transformation from PARTITION
that for the case of renewable resoprces, it s NP-hard to decide whether or not
a given schedule is active, stable, or pseudostable. Since renewablo-resonree
constraints can be expressed by temporal and emunlative-resonree constraints
withont changing the order of magnitude of the problem size, this resnlt also
applies to project scheduling with cuommlative resonrces.

2.2.2 Vertices of Relation Polytopes

All schedules eonsidered in Babsectian 2.2.1 represent vertices of Comarimal
relation polyvtopes, We now turn to vertices of arbitrary relation polytopes.
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Sy - 88
S \S PSS

S / AS
Legend:

Ao Bmeans A DB

Fig. 2.8, Relationship between sety of schedules

Since each vertex of a relation polytope corresponds to some time-feasible
schedule that is a vertex of its schedude polytope, we mmay restrict ourselves
to {arbitrary} schedule polytopes.

Definttion 2.27 (Quasiactive and gquasistable schedules} A feasible
schedule & is called ¢unesiaetive or quasisteble if 5 is the minimal point or
a verter, respectively, of ils schedule polytope Sp{0{S)}. QAS and QSS de-
note the sets of oll quasiactive and oll guasisteble schedules.

Sinece the miminal point of a relation polylope Is always a vertex, any gquask
active schednle is quasistable ax well.

A schednle S s guastactive precisely i no nonemply set of adtivities can
bhe scheduled earlier without deleting at jeast one precedence velationship
(i, 4] € 8(5) or violating some temporal constraint, Schednle S ix quasistable
exactly if there s no nonempty set of activities which can be scheduled both
cariter and laker such that all precedence relationships (4,7} € #{5) and all
temporal constraints are observed, The next proposition provides an equiva-
lent formulation of the latter obgervation, wiich will be useful when dealing
with algorithms operating on the sety QAS and Q88 of all quesiactive and
all quasistable schednles in Chapter 4.

Proposition 2.28 (Neumann et al. 2000). A feasible schedule S is

{a) quosiactine if and only if there ewists o spanning outtree G = (V, Eg) of
ils schedule network N{B{S)) rooled at node O such that 55 — §; = df}('g}
Jfor all arcs (4, 7) € Eg,

(b} quasistable if and only if there exists a spanning tree G = {(V, E¢) of ils
schedule network N{#{S8)) such that 8, -5, = {f:’\é %) Jorallares (3,4) ¢ Fg.

From Proposition 2.28 it follows thet the quasiactivenesy and the gua-
sistableness of a given schedule can be chedked in polynomial time. A further
irnplication of Proposition 2.28 is that any quasistable schedule {and thuy any
quasiactive schedide as well} is integral and thal any quasactive schedule S
satislies
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Obvionsly, active sehedules are guagiactive, and psendostable schedules are
quasistable. Figure 2.4 locates the gquasiactive and quasistable scliedules
within the framework of the schedule sets miroduced before.

S‘I' \ PES 58

S - 88

AS

Legend;
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Fig. 2.4. Reolationship betweon sots of schedules, revisited

2.3 Objective Functions

Ay objective function § @ S - R associates each time-feasible schednde S
with g muuerical assessrnent £{8). Recall that we have assumed [ to be Jower
senicontinnons and thus £ takes ity minliun on compact set 8§ if 8 % @&
Whereas regular objective functions §, which are componentwise nondecreas.
mg, refer 1o temporal objectives of project planning like minumizing the proj-
cch duration, nonregular objective funclions typically translate some monetary
goals snch as mindmizing inventory holding or capacity adjustment costs or
maxirmizing the net present value of the project. Iy this section we are gong
to study several classes of objective functions, which cover a large variety of
resource allocation problems in project managenyent. Based on the results of
Sections 2.1 and 2.2 we provide for cach class a finite set of schedules contain-
ing at least one optimal schedule if § £ 8. In Subscetion 2.3.1 we consider
objective functions that cay be winhmized cfficiently on relation polytopes.
Subsection 2.8.2 s concerned witlh objective functions for which in gencral al-
ready the thme-corstrained project scheduling problom is NPhuard. The latter
objective funciions are typically encountered when solving resource levelling
problems, where the problemn amounts to minimdzing the variability i resonrce
{foading profiles of renewable resonrces (expressed in terms of range, variance,
or total variation). Whereuas resource allocation problems with objective func-

velations, minimizing objective functions from Subsection 2.3.2 reguires the
vestigation of arbitrary schedule-induced preorders. For certain of the lat-
tor abjective functions, however, the search for an optimal schedule can be
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limited to schednle polylopes belonging to Conaximal sehednle-indnced pre-
orders. The latter obiective functions will be studied in Snbsection 2.3.3.

2.3.1 Regular and Convexifiable Objective Functions

Clonsider some noneupty relation polytope Sy{p). Any regular objective fune
tion ks minimized by the unigue minimal poit minSr{p) of Sy(p), which co-
ineides with the earliest schedule belonging to relation network N{p). Now let
£ be some convex {and due to our lower semnicoutinnity asswmption} contin-
nous objective function, Then Anding & minhnizer of f on Syip} can, nnder
some mild techuical asspmptions, be achieved in polynomial thue, eg., by
the ellipsold method {of, Grotsehel et al, 1998, Seet. 4.1} or, more efficiently
on the average, by interlor-point methods based on self-concordant barriers
for Splp). Self-concordant barrlers are available for different classes of con-
vex functions {see the book by Nesterov and Nemirovskil 1984 for details).
The pext definition provides a clags of objective functions which admits a
sipooth coordinate trapsformation such that the resulting time-constrained
project scheduling problem Is a convex programming problem. Hecall that a
bijeetion ¢ is called a Cldiffeomorphisi if both ¢ and ™! are continuonsly
differentiable.

Definition 2.29 (Convexifiable and linearizable objective functions).
Let § 0 8¢ - B be some objective function, We call f converifiable of
there exists o Cl-diffeomorphism o + Sp — X from Sp onlo some Eu-

pex sefs, IF Fop™h is bnear, we speek of a Bnearizable objective function f.

Trivially, each convex objective function is convexifiable and each linear objec-
tive function is Hnearizable. In addition, we notice that due to the contimity
of ™1, all images {Sr{p}) are compact sets and hecanse Sy is a relation
polytope, set X = f{Sy} is convex,

A time-foasible schedule § ¢ M C Sy s called a local mindmizer of [ on
A for some £ > 0, § is o minimizer of f on the relative ball M N B.(5)
arouud S in M {for the basic concepts of relative topology in Euclidean space
needed for what follows we refer 1o Sydsseter et al. 1899, Ch. 12). Ronghly
speaking, the reason for the tractability of time-constrained project scheduling
with convex ohiective finctions is that each local minimizer of f on a relation
polytope Srip) minlmizes f on Sp{g}. The next proposition relates the sched-
ule sets introduced in Subsection 2.2.1 to regular and copvexifiable objective
functions. It also shows that, as for couvex objective functions, any convexi-
fiable objective finiction f cay be minimized on relation polytopes Sr{p) by
compitbing a local minimizer of { on Spipl.

Proposition 2.30. Let [ be some lower semicontinuous objective funelion
and assume that 8 # ¢,
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{a) If | is regular, the sel of active schedules containg an optimal schedule,
3V I f is linear, the set of stable schedules containg an optimal schedule.
WY Iffisl th ¢ table schedul L timal schedul
{ey If [ is lineorizable, the set of pseudosiable schedules contoing an optimal
schedule.
(dY If 1 is converifiable, any set containing o local minimezer of § for ecach
\_ -MOEWRGL] TIGlion DOLONE CONEGINS An ODREQs SCRCAiie,
C snal} relalt fyt bt ptisnal sehedul

Proof. (a) and (b} arc obvious. We fust show {d). Let § be a local mini-
mizer of f on some relation polytope S¢{p). Then there exists some ¢ > 0

for all 2 € o{Srip) M B8 From the injectivity of © we can infer that
D Splp} 01 BASY) = 0{Sylp)) Mo B.AS)), where it follows from the continu-
ity of ¢ % that ©{B.(8)) is open. As a consequence, there exists some ¢ > 0
such that the ball BL {x}) with radius " aronnd @ in X is inclnded in @{5,.(S)).
This inplies that = is a minimizer of o™ on set p{Sp{p)) N Bl(z), 1e,a

local minimizer of for™! on e(Srip)}. Since by assumption fop™ ! is a convex

function and o{Sp{p}) is & convex set, x is also a (global} minimizer of foyp™!
on (Sp(p), 1., [(S) = (f o @™ 1)(2) < (f 0™ )(a) Tor all &' € (Sp(p)).
Thus, we have f{S) < {8 for all & with &' = (5" € o{S7{p)), or, eqniva-
feutly, F{S) < f{5) for all 87 € &p(p). As a cousequence, any local minimizer
of § on some relation polytope Sr{p) minimizes f on the total polytope Sy{p).
From Propositions 2.5 and 2.18 it follows that @{8&) = o{UemrrST(p)} =
Upe prr@lSr{p)), which proves the assertion

We now show statement (¢). Since fop ™! is linear on X, there exists some
that § = ¢~ {2) is not a local extreme point of 8. Then there is an open line
segrient £ C S containing 8. Since 71 s continuous and @ is injeetive, this
means that = is a relative interior point of {€) C w{(S), which contradicts the
fact that = is an extreme point of ©(8). o

Newmamn et al. (2000} bave considered gquesiconcave objective fanctions
and so-called binaryg-monofone objective functions. An objective funetion f
is said to be quasiconcave if its npper-level sets U, = {§ & Sy | f(8) = o}
are convex for every o & R (see, e.g., Avriel et al. 1988, Seccl. 3.1). [ is
termed binary-monoctone if f is nondecreasing oy nonincreasing on each line
segrent in binary divection z € {0, 1172, A quasiconcave function attaing its
mninmm on a compact set A at an extreme point of M becanse on closed
line segments, the iimection is minimized at one of the two endpoints. That is
why there always exists a stable schedule that minimizes f onset §#f f is
quasiconcave and § 3 . Sinee each relation polyvtope Sp{p) arises from the
intersection of finitely many half spaces {§ € RUE? | Sg = 0, §; ~ S > df}
where {i, 7} € £U g, binary-monotone objective functions, like the linearizable
objective functions, always possess a vertex of Sp{p} among their minhniz-
ers on Sylg}. Thus, binary-monotone objective finctions are minhmized by
psendostable schedules. Undike the case of convexifialide objective hnctions,
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however, a local minimizer of a quasiconcave ar binary-monctone ohjective
function § on some relation polytope is generally not a global mintmizer of f
on Srip).

We procecd by providing examples of regudar and convexifiable objective
functions that are of interest In project scheduling. The simplest and most
frequently used regnlar objective function is the makespan or project durefion

f{S) S 59?'r.+3

The project duration problem with renewable resources has been extensively
studied irr the literature during the four last decades {see Subscction 3.1.4 for
an overview). Minimizing the project duration s a suitable objective if the
majority of income payments ocour at or after the end of the project, if the
project deadline is tight and thus Snishing the implementation of the project
as carly as possibly lowers the danger of exceeding the deadline, or if resonrce
capieity s needed for future projeets {cf. Koliseh 1995, Sect. 2.13.
A sccond regular ehiective funetion is the fotal tordiness cost

FS) =) "wl{Si+p—d)T

gl

where d; ¢ Zoo denotes a given dne date for the complction of activity ¢
and w € Zywo is the cost avising from a late completion of activity ¢ per
nnit thine. This objoctive fimction is of particnlar interest for applications of
resaurce allocation methods in make-to-order production schednling, which
will be discussed in Section 6.1, In that case, each real activity corresponds
to the processing of a job on a machine, and violations of the delivery dates
for the completed jobs mcur conventional penalty per unit tine,

We now turm to copvexifiable objective funetions. Of course, any linea and
any convex objective function is convexifinble. A nonregular linear objective
function is the fotal inventory holding cost

5= 3 / a8, eyt

RERY G

where we assunte that each cimnniative resource & stands for the ventory in
a storage facility keeping one intermediate or final product with nnit hold-
ing cost rate ¢ € Z»g. Then f{5) represents the cost arising from the stock
in plamming haterval [0, dl. The linearity of f can be seen as follows. A re-
plenishment of resauce & by vy units at thne §; neurs a holding cost of
exran(d — ;). A depletion of k by —ryy, nnits at thme S; saves a holding cost
of ep{- m;){d 5,3 Thus, the total inventary holding cost f{5) can also he
written as d Y 4 opq Ck Poseye Tik - ZL{_Rw ek e Tk Si

I gener d,E cerbain activities and cvents ¢ of 8 project are associated with
a cash fow r & %, which may be a paying out for raw materials or workforce
or a paying in arising at the completion of a task when reaching a milestone.
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When evalnating the profitability of a loug-termn project, the cash Hows have
to be discomtted by some mterest rate o, which can, e.g., be chosen to be the
reinnirmerne attractive rate of retnrn. The snm of all cash flows disconnted to
time § is called the nef present value of the project, For the sake of shinplicity,
we suppose fhat all cash flows are disconnted contimously and that each cash
flow ¢! arises al thme S The factor by wlhich cash flow ¢f is disconnted
then equals e~ %% and thns the net present value depends on the schedule S
according to which the project is povformed. By minimizing the negative net

present value
. . -t o <
f{f}f) - _ 2 C;f ¢ oS
eV
woe obtain a schednle that maximizes the financial benefit of the project in
terms of its pet present value. Grinold (1972} has shown that the {negative)
net present value is a linearizable objective funetion. Let ¢ 1 Sp — X ¢ B2

Sy = 0 becomes zg = 1. The Iinearized objective funetion is {f o @™ 1)z} =
- E:.,-_@, c;-f #;. In addition, the net present value fanetion £ is binary-monotone
because [ is differentiable and for any thne-feasible schedule § and any hinary
direction z € {0, }}”“"“3, the directional derivative of f at a point S0z € &7

et al. 20035, Sect. 3.3).
A convex objective function considered in project management is the total
earliness-tardiness cost

=2

where w! and w) respectively denote the cost per unit time incurred by an
carly or a late completion of activity ¢ € V with respect to given due date
d; € Lzp (see, e.g., Schwindt 2000¢ or Vanhoucke et al. 2001}, Another exam-
ple of & convex objective {unction is the negative folal weighted free float of
the project

FLSY o ; wg ((iltl;igr{x b 8] — (izi})igyiﬁ".; — 8551}

For given schedule 8§, the total weighted free foat of the project is the weighted
sur of all early and late free floats of activities ¢ € V if the carliest snd latest
start times E5; and LS are set to be equal to S (¢l Subsection 1.1.3). A
schiedule with maximum total welghied free float can be regarded as robust
in the sense that when execting the project, deviations of idividual start
Hees 9 frowe schedule will mirimally affect the start tines of other activities,
I Section 6.5 we shall discnss how tlie total weighted carliness-lardiness and
total weiglited free Hoat objective functions can be used for project scheduling
under uncertainty.
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Before concluding this subsection, we notice that sl objective functions
discussed above are continuons, whiclt of course implies their lower semicon-
thnity.

2.3.2 Locally Regular and Locally Concave Objective Functions

1 thig subsection we move on to objective functions that are regnlar or eou-
cave on individual eqnal-preorder sets, Those objective functions play an b
portant role for resonrce levelling, where one strives st smoothing loading
profiles v,{S, ) of renewable resources k € R? over tine. Resource levelling
probleins typically arise when resource capacities may, at a certain cost, be
acdapted to the respective requirements, In that case, the resource capacities
arc regarded as being nulimited and the problem is 1o find a feasible minbmunm-
cost schiednle. However, bosides tie cost poit of view, levelling loading profiles
over thne is of interest in its own right becanse in practice, evenly nsed re-
sources tend less Lo be subject to disruplion tlan resources whose psage is
Blghly fuctuating over time. Accordingly, 1 has been proposed to use rosonree
levelling as a technique for capacitaled master production scheduling in pro-
duction planuing, where for a planming horizon of abont one year, the monthly
production guantities masching the gross requirements for the main products
of a company are delennined {sce Irauck et al. 1097, Neunmaun and Schwindt
1698, aud Section 6.2).

BDefinition 2.31 {Locally regular and locally concave ebjective func-
tions). Let f: Sy - R be some objective function, We call f locally regulor,
if £ is regular on all cqual-preovder sets. f is termed locally concuve of § is
concuve on all equal-preovder sets,

The following proposition establishes the connection between locally rep-
nlar and Jocally concave objective funetions and the scts of gnasiactive and
guasistable schedules introduced in Subsection 2.2.2.

Proposition 2.32 (Neumann et al. 2000}, Lei f be some lower semicon-
tinnous objective funclion and assume that § # {.

{a} If [ is locally regular, the set of quasiactive schedules conloins en optimal
schedule.

(bY If | is locally coneave, the sct of quasistable schedules conleing an optimal
schedule.

Froof. The lower scricontinuity of £ and the compactness of § mply that f
attains Hs minimam on 8. We first show statement {a). From the regnlarity
of f on equal-preorder sets we can conclnde that this mindmun is taken at the
nrinimal pobrt of some equal-preorder set, whicl at the same e represents
the niphnal poiat of some schedule polytope (see Proposition 2,16, which
applics to cumnlative resonrces as well), We now show statemment {b). From
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the eancavity of f on equal-preorder sets it fallaws that f assumes its mintmam
at a verlex of some equal-preorder set. Praposition 2,16 says that this vertex
is alse a vertex of a schedule palytepe. N

In canbrast Lo regular ar convexifiable abjective fanetions, locally regular
and leeally cancave abjective functions cannot be minimized efficiently o1 re-
latian palytapes in gencral, In partionlar this means that a resource allacation
prefilem with a leeally regular or 2 locally concave abjective function genevally
daes not became mare fractabic when the resonrce canstraints are deleted. Be-
low we shall give an example of a lecally regular objective function for which
time-constrained projeet scheduling i NP-hard, Note that minimizing such a
function en an equal-precrder set constitiles an easy (Lhough possibly unsalv-
able) problem hecanse any equakpreorder seb possesses at mast ane minimal
paint. Concerning lecally cancave functions, it is well-known that already the
minimization of concave functions on hiypereubes is NP-mrd {of. Horst and
Tuy 1996, Sect, A.1.2), Proposition 2.28 indicates a simple way of goncrating
all quasiactive or all quasistable schedules by canstricting all spanning out-
trees rooted st node O (resp. spanning trees) of relation networks belonging
to feasible schedule-induced preorders. A correspanding schedule-generation
scheme will be discussed iu Seetion 4.1

Next we cansider loeally regular and loeally coucave objeetive functions of
resairee fevelling problems that have been discussed in Hleralure. The olijec-
tive funictions express the variahility i the wtilization of renewalie rescurees
aver time i terns of the range, the variance, and the total variation, respec-
tively, of the loading profiles ri{5, )} of renewalile resairees b € K7,

An example of a locally regular olijective Bunetion is the tefel nrocurement
cost for renewalile resanrces

Fisy = Z g max 7S, 1)
reme  0<t<d

where ¢ € £oq denates the unit pracurement cost of renewable resouree
ke Re, The tatal procirement cost eqiials the weighted sum of the maxinung
resouree reguirements {ar, i1 other words, the weighted sum of the ranges of
the leading prefiles »{35, 7).

Proposition 2.33, The tolal procurement cost [ i3 o lower semicontinuous
and locally regular objective function.

Proof. The lower semicantimity can be seen as follaws, Let § be same thne-
foasible schednle. The closedness of relation polylopes Sy(p) with g 4 6(5)
implies that there exists soute £ > G such that #{5") ¢ #{5) for all 87 cantained
in the relative hall B.(SINSp by Sy aranud 8. Sinee far cach resource b € RP,
X o, o7 7% (5, 1} coincides with the weight of a maximum-weight antichain in
5}, we abtain f{5)} = f{S)or all 8 € B.(5)NSp. The lawer semicantinuity
new fallows from the fact that f is Jower semicantinnons precisely if f{(5) <
Hminfgr.g F{S7) for all § € Sy (see, e.g., Hitart-Urruty and Lemardchal
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1983, Sect. A.1). Since f{5) equals the weight of a maximun-weight antichain
m 6(8Y, f is constant and thus regelar on cqual-order sets. [

The total procurement cost is the obicotive function of the resource in-
vestment problemt introduced by Méhring {1984). The resource investment
problem arises in applications where installing resources newrs fixed trans
portation or setup costs per unit capacity. The recognition version {i.c., the
question whether there is a feasible solution whose objective function valne
is smaller than or equal to a given threshiold value, sce, eg., Papadipitrion
and Steighiz 1998, Sect. 15.2) of a resource investment problem with one re-
source coincides with the {easibility vorsion {Le., the guestion whether there is
a feagible solntion) of the corresponding resource-constrained project duration
problem. The latter decision problem has been shown to be NPecomplete by
Theorem 1.12, which implies that the resource investiment problem is NP-hard

resource leveling that has been stndied since the early work of Burgess and
Killehrew (1962} is the tofal squared utilization cost for renewable resonrces

d
18 = 3 a [ s
i
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where ¢ € L. Since workload f{; RS 0 = ) v e does not depend
on scliedule 5, f{5} equals the weighted sum of the variances of the loading
profiles r{ S, ) plug a constant.

Proposition 2.34. The total squared wiilizalion cost § is a lower semicon-
tinwous and locally concave objective function.

Proof. The lower semicontinuity of f follows from its continuity, We show
that f is concave on equal-order scts, For given schednle 5, let AC{S) be the
set of antichains fu strict order 0(8), let (U} = D7 . ;rix be the weight
of antichain U € AC(S), and let p(U, S} = L:A(s,f.)xu dt he the {ime during
which precisely the activitics ¢ € U overlap in {ime given schedule 5. By
wp{l, 8y = r (N7, 8} we denote the corresponding workload on resonrce
ke RF. The total squared wtilization cost can then be written as f{5} w
2awere G 2veaces) MU (U, 5).

Now cousider two schedules S and 87 inducing the same strict order 8{9) =
(5. For any o € [0, 1] we have AC(S) = AC(S) = Al{aS+{1-a)8"). With
respect to schedule S, the activities 7 from a ponempty antichain U ¢ AC(S)

U 8Y = p{U, 8 i U ds Crmaximal in ACLSY. Since function p{U,-) is con-

Consequently, wip{l/, &8 + {1 — @38 2 awp (U, 5) + {1 — odun (U, 57) for all
%w}.ma;xi;-;-;zﬁ a}:zti'(:haiz'zs Ug AC(SY and all k ¢ R*. As XUEA{:{S) wp{l), 8 =
Loveactsy WU S = Dlpe e Wl a8 + (1 — a)S7) = 3 raeps for
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all £ € R?, a positive difference wi{U, a8 + {1 ~ )8} ~ low U, $) +
(1 — aywe{l/, 8 for the latier antichains U weighted by 7{{/) corresponds
to an equally large negative difference for the remaining (not C-maximal)
antichalns ' C UV weighted by »o{U) < rp{U). By recursively applying
the above reasoning to the fnction which srises from [ by deleting the
Comaximal elemoents from set AC {(8Y mnti] AC(S) = #, we {inally obtain
HaS 4+ (1~ o38Y = af(8) + (L~ o} (87} for any o € [0,1], which pro-

vides the concavity of f on tzqud}--- rder sots. a

By transiormation from 3-PARTITION, Neumann ot al. {20038), Sect. 3.4,
have shown that finding a tine-feasible schednle with minbmmn total squored
utilization cost is NP-hard.

Now let &, < -+ < #, denole the start aud completion thmes of real
activities ¢ € V¥ Any inup discomtinuity 1 loading profiles 74(8, -} for k& R#
occurs ab some start or completion time N where T < g < w. A further
resource-levelling objective function that has been studied in literature is the
total adjustment cost for renewable resources

(ﬁ' ----- L CL Z TL(‘S ’i,{» V'k(sat;} ----- 3)]
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where £g 1= 1 and ¢ € Log is the cost arising from increasing or decreasing
the availablity of resource £ € R¥ by oue unit {see, e.g., Younis aud Saad 1996
or Nepmann and Zimmermann 2000). Note that since 7 {S, fa) = vy {b ti=40
for all k € R7, f(S) equals 237, o 3oy [0 (S, 8} = 7(S, )] T Thizs}
the case where decressing the availability of {certain} resonrees does not incuy
additional cost is contained in the total adjustment cost problem. The total
adiustinent cost coincides with {he weighted sum of the fofal variations of the
loading profiles r{S, }

Proposition 2.35. The fotal edjustment cost [ s o lower semicontinuous
and locally concave objective funclion.

Proof. Apparently, F{S) can be exprossed as & function of all pairs {4, 7) € 8{5)
for which the precedence constraints 85 > 5 4 p; are active. Consequently, f
is constant on ihe relative interior of any face of an equal-order set. Morcover,
it 16 cagily seen that for any such face, the objective function values of relative
boundary points are Jess than or egnal to the objective funclion values of
corresponding relstive interior points. Hence, f is concave on equal-order sets
and lower semicontinnons. £l

Finally, we notice that in contrast to the tolal procurement and tofal
squared wiilization costs, f I8l general not continuons on equal-order sets.
In Newmann et al. {20038}, Sect. 3.4, it is shown by the same polynomial
transfornation from 3-PARTITION as for the lotal squared utilization cost
that minimizing the total adjustient cost on set Sy is NP-liard as well.
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2.3.8 Preorder-Decreasing Objective Functions

I cortain eases, the mumber of schedules to be ennmerated for minhnizing
a locally regular or a locally concave objective funetion ean be decreased by
restricting the search to schedules inducing a maximum numbcer of precedence
relationghips.

Befinition 2.38 (Preorder-decreasing objective function). 4n objec-
tive function [ is called preorder-decreasing if 0 2 8 implies wige sz oy F{8) £
i}.}.f‘ge‘s"?{{j} FL8Y Jor all schedule-induced preerders 8 and §'.

It folows from the definition of preorder-decrcasing objcctive functions
that, if S 3 @, such functions possess a minimizer on some schedule polytope
belonging to an C-maximal schedule-indneed preorder. The total procurement
cost is an example of a preorder-decreasing objective function, as has already
heen noticed by Méhring (1984}, As an alternative to the construction of
spanning trees {see preceding Subsection 2.3.2), a preorder-decreasing locally
regnlar or loeally concave objective function ean be winmized on & by gener-
ating the set of C-maximal feasible schedule-induced preorders. Nidhel {1999)
has proposed a branch-and-bound algorithm for the resource investinent prob-
fer that is buplcitly based on this concept. The approach generally proves
advantageous if the minimization of the ebjective function on equal-preorder
sebs already constitutes an NP-hard problem {which in particular may be the
ense for locally concave objective functions) because only the vertices of the

In conclusion, Table 2.1 sununarizes the relationships between the different
clagses of objective Binetions introdiced and the gsets of candidate schedules
disenssed in Section 2.2,

Table 2.1. Objective functions [ and minimizers on 8

Objective function  Minimizer

Repgular Miniinal point of &

Convexifiable Local minhaoizer on Comax, relation polytope Sy{p) € 8
Locally regnlar Minimad point of schednle polytope Sp{8(5Y C S
Locally concave Vertex of schedule polytopes Sp{#{S1H C &
Preorder-decreasing  Minbmal point of Cominimal schedule polytopes

locally regular o Sp@{SHCS

Preorder-decreasing  Vertex of Cominiimal sehedude polytopes
locally concave f+#Sp(@{SHCS




