
Relations, Schedules, and Objective Functions 

When allocating scarce resources over time we have to define precedence rcla- 
tionships among the activities of the project. Those precedence relationships 
establish a binary relation in the activity set of tlie project. Together with 
tlie original temporal constraints, the binary relation gives rise to a preorder 
in thc activity sct. Dcpcnding on tlie type of basic project scheduling prob- 
lcrn given and the specific objective function to be minimized, different types 
of preordcrs have to bc investigated. In this chapter we revicw and extcnd 
a classificatiorl of schedules and objective functions that has been proposed 
by Ncumann ct al. (2000). The classification is based on two basic repre- 
sentations of the fcasible rcgion of project schcduling problcms as unions of 
relation-induccd polytopes. Thc purpose of the classification is to provide, for 
each class of objective functions, a finite set of candidates for optimal sched- 
ulcs that arc characterized as specific points of the relation-induccd polytopes 
slick1 as minimal points, local minimizers of the objective function, or vertices. 

2.1 Resource Constraints and Feasible Relations 

Before we discuss the relationship between rcsourcc constraints and certain 
relations in the set of real activities or events, respectively, we first review 
somc basic terminology. 

Definition 2.1 (Binary relation, preorder, and strict order). A binary 
relation p in  (ground) set X is a set of pairs (x, y )  E X x X .  Relation p' i n  
X with p' > p is termed an extension of p. t r ( p )  denotes the transitive hull 
of relation p, i.e., the C-minimal transitive extension of p in  X .  A transitive 
binary relation 0 i n  set X is termed a preorder i n  X. Two elements x, y E X 
are referred to as comparable i n  preorder Q i f  (x, y )  E Q or ( y , x )  E 8, and 
incomparable, otherwise. Q is a complete preorder if ( i ,  j) E 6' or (j, i )  E 0 for 
all i ,  j E X, i # j .  A set U C X of pairwise incomparable elements is culled 
an antichain in  8.  prede(x)  = { y  E X I ( y ,  z) E Q )  is the set of p&decessors of 
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z i n  0 .  z E Y C X is called a maximal element of Y i n  0 if ( y ,  cc) E 0 implies 
( x ,  y )  E 0 for all y E Y, y # z .  A n  irreflexive preorder is asymmetric and 
thus represents a strict order. The covering relation cr(6') of strict order 0 i s  
the C-minimal binary relation p i n  X with t r ( p )  = 8.  The precedence graph 
of strict order 0 is the directed graph G ( 0 )  with node set X and arc set c r (0 ) .  

Whcn we deal with renewable resources, forbidden sets F are brokcn up by 
introducing prcccderice constraints S j  > S,+pi between rcal activities i ,  j E F .  
In other words, wc construct a strict ordcr 0 in thc set V u  of real activities 
where ( i , j )  E 0 means that activity j cannot be started before activity i has 
bccn completed. In case of cumulative resources, surplus and shortage sets F 
are broken up by introducing precedence constraints S j  > Si between events 
i E Ve \ F and events j E F. Thus, by resolving cumulative-rcsonrcc conflicts 
we establish a reflexive preorder 0 in event set Ve whose elements ( i ,  j )  say 
that event j cannot take place bcforc the occurrencc of cvcnt i .  

Thc following two types of preorders will be needed when studying prece- 
dence relationships between real activities or events that are induced by a 
given schedule. 

Definition 2.2 (Interval order and weak order). A n  interval order i n  
set X is a strict order 0 i n  X for which ( w ,  x ) ,  ( y ,  z )  E 6 implies (w, z )  E 6' 
or ( y ,  x) E Q for all w , z ,  y ,  z E X .  A (reflexive) weak order i n  set X is a 
complete and reflexive preordcr i n  X .  

2.1.1 Renewable-Resource Constraints 

In this subscction wc consider irreflexive relations in the set V a  of rcal activ- 
ities for the scheduling of projects with renewable resources. Wc first define 
the concepts of tirne-feasible and feasible relations, which go back to  the work 
of Radermacher (1978) and Bartusch et al. (1988). In differcncc to the treat- 
ment of the material by Neumann et al. (2000) and Neumann et al. (2003b), 
Scct. 2.3, wc use rclations instcad of strict orders, which allows of a unifying 
view on renewable-resource and cumulative-resource constraints. 

Definition 2.3 (Time-feasible and feasible relations). Let p be an ir- 
reflexive relation i n  set V" and let S T ( p )  := { S  E ST 1 S j  2 Si +pi for all 
(i, j )  E p) be the set of all time-feasible schedules satisfying the precedence 
constraints given by p. S T ( p )  is called the relation polytope of p. Relation p is 
termed time-feasible if S T ( p )  # 0. A time-feasible relation p with S T ( p )  C S 
is called feasible. 

Condition S T ( p )  # 0 means that the precedence constraints from rcla- 
tion p do not contradict thc prescribed tcniporal constraints. If S T ( p )  C S ,  
all schedules satisfying those precedence constraints are feasible. If p is a fea- 
siblc rclation, then all time-feasible extensions p' > p are feasible as well. A 
feasiblc relation p represents a solution to thc sequencing problem of resource 
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allocation, which consists in detcrmining a (partial) order in which competing 
activities are processed on the rcsourccs. Thc subscqucnt time-constrazned 
project schedulzng of the activities is achieved by finding somc (necessarily 
feasiblc) schcdule S E ST(p) rninimizing objective function f on ST(p). 

Let M C ST be a nonempty set of time-feasible schedules. We say that S is 
a mznzmal poznt of M if thcre is no S' E M with S' < S, where S' < S means 
S' < S and S' # S. Relation polytope ST(p) is the set of all timc-fcasiblc 
schcdules bclonging to the following "expanded" project network N(p). As a 
consequence, the corresponding carlicst schcdule rcprcsents the unzque mini- 
mal point of polytope ST(p) (see Subsection 1.1.3). 

Definition 2.4 (Relation network). Given relation p i n  set V", the rela- 
tion network N(p) results from project network N by adding, for each pair 
( i ,  j )  E p, the arc ( I ,  j) ,with weight pi. By  D(p) = (d&)i,jEva we denote the 
distance matrix belonging to relation network N(p). 

Bartusch ct al. (1988) consider time-feasible strict orders 8 that are extcn- 
sions of the strict order 

O(D) := { ( i ,  j) E V" x Va I di, > pi) 

in V" induced by distance matrix D.  We shall call such a strict order 8 BMR- 
feaszble if no antichain U in t9 is forbidden. As we shall prove later on, the 
antichains in 8 are exactly the sets of real activities which, subject to the 
precedence constraints from H ,  can be in progrcss simultaneously. That is 
why any BMR-feasible strict order is feasible as well. On thc othcr hand, 
there may be feasible strict orders H > O(D) which are not BMR-feasible, 
as will be illustrated in Examplc 2.10. Thc reason for this is that in general 
O(D(8)) > t r (8 U O(D)). In the case where 6,, 2 p, for all ( i ,  j )  E E ,  strict 
order 8 is feasible precisely if t r (0  U O(D)) = O(D(8)) is feasible. 

By applying Theorem 1.17 we obtain the first basic rcprcscntation of the 
set S of all feasible schedules. 

Proposition 2.5 (Bartusch et al. 1988). Let M3R be the set of all 2-  
minimal feasible relations in  uctiv.ity set Va. Then {ST(p) I p E M F R )  is a 
covering of S .  

Notice that in general thc abovc covcring is not a partition of S because two 
different time-feasible relations p and p' may not be contradicting each other 
(i.e., ST (p U p') = ST(p) n ST (p') # 0). Proposition 2.5 will be uscful when 
dealing with objective functions that can efficiently be minimized on convex 
polytopes like regular or convex functions. In this casc, thc basic rcsource- 
constrained project scheduling problem (1.8) can be solved by cnumerating 
(subscts of) relations p E M 3 R .  

In the following wc develop characterizations of timc-fcasiblc and feasible 
relations that allow for efficiently checking the feasibility of a given relation. 
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The latter technique will bc used when dealing with the case of uncertain input 
data in Section 6.5, where solving a resource allocation problcm requires the 
generation of appropriate feasible relations in the activity set. We shall apply 
a similar approach in Section 5.2 for deciding on the feasibility of schedules 
when resource units are occupied during a sequence-dependent changcover 
time between the execution of consecutive activities. 

Proposition 2.6 (Neumann et al. 2000). Relation p in Va is time-feasible 
if and only if relation network N(p)  does not contain any directed cycle of 
positive length. 

Proof. By definition, relation p is time-feasible exactly if ST(p) # 0. Poly- 
tope ST(p) corresponds to the set of time-feasible schedules belonging to  
network N(p) .  From Proposition 1.7 it follows that there is a time-feasible 
schedule for N(p) precisely if N(p)  does not contain any dircctcd cycle of 
positive length. 0 

As a conscqucncc of Proposition 2.6, checking the time-feasibility of p 
can bc done in U ( n [ m  + lpl]) tirrie by applying Algorithm 1.1 to  relation 
network N(p)  for computing distances d;, for all i E Va. The next proposition 
shows how the feasibility of p can be established on the basis of distancc 
matrix D(p) .  We need thc following preliminary lemma. 

Lemma 2.7. Let ST # 0 and let U C: Va be a set of real activities such that 
dij < pi for all i, j E U .  Then there exists a time-feasible schedule S with 
A(S, t )  > U for some t > 0. 

Proof. Two activities i , j  E U necessarily overlap in time if dl""" < pi and 
%? 

d y "  < pj.  Now assunlc that wc add, for all i , j  E U with z # j ,  a cor- 
responding arc ( j , i )  weighted by 6ji = -pi + 1 to project network N .  We 
consider the addition of one of those arcs ( j , i ) .  d,:, < p, or, equivalently, 
dij < p, - 1 iniplies dij + 6ji < pi - 1 -pi  + 1 = 0. Proposition 1.9 then says 
that therc is no directed cycle of positive length in the resulting (expanded) 
network. Moreover, for all modified distances dgi, with g, h E U we have 
d g h = d g j + 6 j i + d i h  = d g j - p i + l + d .  zh < - Pg-  1 - p . + l + p i - 1 = p  z 9 - I S O  
that property dgh < pg is preserved for all g,  h E U .  Thus, after the  addition 
of all arcs (j, i) E U x U with i # j thcrc is no directed cycle of positive length 
in the resulting network N'. Proposition 1.7 then yiclds S& # 0 for the set S& 
of time-feasible schedules bclonging to  network N'. Due to the added maxi- 
mum tirrie lags, any two activities i, j E U ovcrlap in time for cach schedule 
S E S$, i.c., [Si, Si + p i [ n  [Sj, Sj + p j [ #  f for all i, j E U. The Helly property 
of intervals then implies that the interval niEci[Si, Si + pi[ during which all 
activities from set U overlap is nonempty for each S E S&. 0 

A constructive proof of Lemma 2.7 for the case where no deadline d for the 
latest termination of the project is prescribed can be found in Bartusch et al. 
(1988). 
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Proposition 2.8 (Neumann et al. 20036, Sect. 2.3). Time-feasible rela­
tion p in V^ is feasible if and only if for each minimal forbidden set F £ !F, 
relation network N{p) contains a directed path of length d^- > pi from some 
node i G F to some node j G F. 

Proof Sufficiency: Let p be a time-feasible relation such that for all minimal 
forbidden sets F G ^ , there is a pair (i, j ) of activities i, j G F with d^- > pi. 
Each schedule S G <5T(P) satisfies precedence constraint Sj > Si -\- pi for 
all those pairs (i, j ) G G{D{p)). From Theorem 1.17 it then follows that all 
schedules S G ST{P) are resource-feasible. Thus, with ST{P) Q ^T we have 
9y^ST{p)CSRnST = S. 

Necessity: We assume that there is a forbidden set F with d^j < pi for 
all 2, j G F. Then from Lemma 2.7 it follows that there exists a schedule 
S G ST{P) for which all activities i e F overlap in time. Thus, S is not 
resource-feasible and ST{P) % S, which contradicts the feasibility of rela­
tion p. D 

The following theorem is a direct consequence of Proposition 2.8. 

Theorem 2.9. Time-feasible relation p in V^ is feasible if and only if no 
antichain in strict order G{D{p)) is forbidden. 

Proof. U is an antichain in G{D{p)) exactly if df- < pi for all i, j G U. 
Proposition 2.8 says that p is feasible if and only if no antichain in G{D{p)) 
is a minimal forbidden set. Obviously, this is true exactly if no antichain is 
an (arbitrary) forbidden set because any forbidden antichain U would embed 
some minimal forbidden subchain U' <ZU. D 

Theorem 2.9 implies that the feasibility of a time-feasible relation p can 
be verified by finding, for each k G 7^^, a maximum-weight stable set Uk in 
the precedence graph G{0) of strict order 9 = G{D[p)) with weights rik for 
nodes i GV°'. Since G(0) is a transitive directed graph (see, e.g.. Bang-Jensen 
and Gutin 2002, Sect. 1.8), such a set Uk can be determined efl[iciently by 
computing a minimum (s,^)-flow u^ in a flow network Gk{0) arising from 
G{0) by adding two nodes s and t and arcs (5, i) and (j, t) for sources i and 
sinks j of G{0) and where lower node capacities rik for nodes i GV°' have to be 
observed (cf. Kaerkes and Leipholz 1977 and Mohring 1985). This can be done 
in 0(n^) time by two apphcations of the FIFO preflow push algorithm for the 
maximum-flow problem with upper arc capacities (see, e.g., Ahuja et al. 1993, 
Sect. 7.7, or Bang-Jensen and Gutin 2002, Sect. 3.9). p is feasible precisely if 
for each k G 7^^, the minimum-flow value (l){u^) and thus the weight YlieUk ^̂ ^ 
of stable set Uk is less than or equal to resource capacity Rk. 

Example 2.10. We consider a project with four real activities and one renew­
able resource. Figure 2.1a shows the relation network N{p) belonging to strict 
order p = {(1, 2), (3,4)}, where nodes i GV^ are labelled with durations pi on 
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the top and resource requirements r^ in boldface on the bot tom. The resource 
capacity is i^ = 2. There are five minimal forbidden sets { 1 ,2 } , { 1 , 3 } , {1 ,4} , 
{2,4}, and {3,4}. p is not BMR-feasible because antichains { 1 ,3 } , {1 ,4} , and 
{2,4} are forbidden sets. The strict order 6 = G{D{p)) induced by distance 
matr ix D{j)) equals {(1,2), (1, 3), (1,4), (2,4), (3 ,4)} . The corresponding flow 
network G{9) is shown in Figure 2.1b. Each node i is labelled with lower node 
capacity ri and each arc ( i , i ) is labelled with minimum flow uij on ( i , i ) . A 
maximum-weight antichain in 9 is U — {2,3} whose weight r2 + rs = 2 < /? 
equals the minimum flow value (i)[u). Thus, strict order p is feasible. 

Fig. 2 .1 . Difference between feasibility and BMR-feasibility of strict orders: (a) re­
lation network N{p); (b) minimum (s,t)-flow in network G{0) 

We now turn to strict orders 9 in V^ tha t are given by the precedence 
relationships induced by some schedule S, 

Def in i t ion 2 .11 (Schedule - induced str ict order) . Given a schedule S, 
strict order 9{S) := { ( i , j ) £ V^ x V^ \ Sj > Si -i-Pi} is the schedule-induced 
strict order which corresponds to the precedence relationships established by S. 
The relation polytope ST{9{S)) of 9{S) is called the schedule polytope of S, 
and the relation network N{9{S)) is called the schedule network of S. 

Schedule-induced strict orders 9{S) belong to the class of interval orders. 
This can be seen as follows. Let S be some schedule and let (^, /i), (i, j ) G 9{S). 
If (i,/z) ^ 9{S), then Sj > Si+pi > Sh> Sg^pg, i.e., (gj) e 9{S). 

By Definition 2.3 we have 

ST{P) = {SeST\ 9{S) D p} (2.1) 

If schedule S is time-feasible, ST{9{S)) contains S. If schedule S is feasible, 
we have ST{9{S)) C S. The reason for this is tha t all schedules 6" G ST{9{S)) 
satisfy 9{S') 3 9{S) (compare (2.1)) and thus each active set A{S',t') with 
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0 < t' < d is a subset of some activc sct A(S,  t )  where 0 < t < 2. This proves 
the following proposition. 

Proposition 2.12 (Neumann et al. 2000). Strict  order Q ( S )  induced by a 
time-feasible schedule S  i s  feasible if and only if schedule S  i s  feasible. 

Notice that for a timc-feasible schedule S ,  strict order Q ( S )  represents the 
C-maximal relation whosc rclation polytopc contains S.  This can easily be 
shown by assuming the existcnce of some rclation p > Q ( S )  with S E ST(p).  
Then relation p contains a pair (i ,  j )  f Q(S) .  That is, we have S3 < S, + p,, 
which contradicts thc assumption S E ST(p).  The lattcr observation implies 
the following statcmcnt. 

Proposition 2.13. Each C - m a z i m a l  feasible relation i s  induced by some fea- 
sible schedule. 

The rclation polytope ST(@) of some strict order 8 is the set of all time- 
fcasible schedules inducing an extension of 8. The set of all schedules induc- 
ing B is termed the equal-order set of Q. 

Definition 2.14 (Equal-order set). Let B be some schedule-induced strict 
order i n  set V a .  Equal-order set SF(Q) := { S  E ST I H(S) = 0 )  i s  the set of 
all time-feasible schedules inducing strict order. 0 .  

Equal-order sets represent differences of schedule polytopes and thus are 
generally not closed. If Q is an C-maximal time-feasible strict order, we 
have SF(@) = ST(@),  and ST(8) c ST(Q) ,  otherwise. Equal-ordcr sets arc 
convex because every schedule S on a line segmcnt joining two schedules 
S', S" E SF(Q) induces strict ordcr 0. The concept of cqual-order sets leads 
to the second basic representation of the set S of all feasiblc schedulcs. 

Proposition 2.15. Let SZO be the set of all feasible schedule-induced strzct 
orders. T h e n  {SF(Q)  I Q E SZO) i s  a partition of S .  

We will refer to this rcprescntation of S when dealing with rcsourcc levclling 
problems, where the objective function is regular or concave on equal-order 
sets and thus can be minimized by investigating minimal points or verticcs, 
respectively, of equal-order sets. The following proposition shows that this 
corresponds to enumerating minimal points or vertices of schedule polytopes. 

Proposition 2.16. For a given project, the set of ull min imal  points (resp. 
vertices) of equal-order sets coincides with the set of all min imal  points (resp. 
vertices) of sch,edule polytopes. 

Proof. We show thc coincidence of the vertex sets. The same reasoning can be 
applied to minimal points. Let S be a vertex of some schcdule polytope ST(0).  
Then S is a vertex of equal-order set SF(O(S)) as well because S E SF(Q(S) )  
and SF ( Q ( S ) )  C ST(Q).  Now let S bc a vertex of some equal-order set ST (0).  
Then SF(8) = ST(Q(S ) )  \ (Up3@ST(p)). Since set uP3@ST(p) is closed, S must 
be a vertex of ST(Q(S) ) .  0 
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2.1.2 Cumulative-Resource Constraints  

In this subsection we are concerned with relations cstablishing precedence 
rclationships between the events of a projcct with cumulative resources. Thc 
concepts of time-feasible and feasible relations are defined in arialogy to (time-) 
feasible relations for the case of renewable resources. 

Definition 2.17 (Time-feasible a n d  feasible relations).  Let p be a rela- 
t ion  in event set V" and let ST(p) := {S E ST I Sj > Si for all ( i ,  j) E p} be 
the relation polytope of p. Relation p i s  termed time-feasible if ST(p) # 0. A 
time-feasible relation p is  called feasible if  ST(^) C S .  

A feasible relation in set Ve dcfincs prccedence constraints bctwccn the 
events from set Ve which are consistcnt with the temporal constraints and 
which ensure that all schcdulcs S E ST(p) are feasible. The corlccpts of relation 
nctwork N(p) and corrcsponding distance matrix D(p) are defirlcd as for strict 
orders. 

O(D) := {(i, j )  E Ve x Ve I d,, > 0) 

denotes the reflexive preorder in set Ve induced by distance matrix D. 
Thcorcm 1.28 providcs the first relation-based representation of the S of 

all fcasible schedules. 

Proposi t ion 2.18. Let M F R  he the set of all C - m i n i m a l  feasible relations 
in event set Ve. T h e n  {ST(p) I p E MF'R) is  a covering of S .  

Again, thc covcring of S by relation polytopes is generally not a partition. 
As for relations in set V", wc investigatc how thc feasibility of a given 

relation in the event set can be checked efficicntly. We need two preliminary 
lcrnrnas. The first lemma shows that any event set U C Ve arising from the 
union of predecessor sets in rcflcxivc prcorder O(D) can be an activc sct. 
The second lemma states that if not all minimal forbidden scts are broken 
up by precedence constraints induced by distance matrix D, then there exists 
a forbidden set satisfying the conditions of Lemma 2.19, which implies that 
there are time-feasible schedules which are riot rcsourcc-feasible. 

Lemma 2.19. Let ST # @ and let U C Ve be a set of events such that  for all 
i ,  j E Ve with dij > 0, j E U implies i E U. T h e n  there exists a time-feasible 
schedule S with A(S, t )  = U for some t 2 0. 

Proof. We select some j E U with d,, < 0 for all i E U, e.g., a maximal clement 
of U in reflexive preorder O ( D ) .  Since set U is finitc, such a maximal element 
always exists. Event i E U necessarily occurs no later than j if d z i n  > 0, and 
event i $! U must occur after j if d Z z n  > 0. Suppose that project nctwork N 
is expanded by adding an arc ( i ,  j )  with weight = 0 for each i E U, i f j 
and by adding an arc (j, i )  with weight 6ji = 1 for cach i $ U .  In what follows 
wc prove that the resulting network N' does not contain dircctcd cycles of 
positive length. Event j has been chosen such that (1) d j f ,  < 0 for all h E U .  
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Moreover, from the definition of set U it follows that (2) dgh < -1 for all 
g f U ,  h E U .  We first consider the addition of one arc ( i , j )  with i E U .  
Since (1) providcs d j i  < 0, it follows from Proposition 1.9 that no directed 
cycle of positive length is created. Next we show that the updatcd distance 
matrix D still satisfies inequalities (1) and (2). Obviously, adding ( i ,  j )  docs 
not change any distance d j h  with h E U since from (1) we havc dji+hij  +dj,, 5 
0 + 0 + d j h  = d j h .  For distances d,,, with g f U and h E U that are modified 
whcn calling Algorithm 1.3 we have dgh = dgi + hiJ + d j h  < -1 + 0 + 0 = -1 
because of (1) and (2). Now consider thc addition of one arc ( j ,  i )  where 
i f U. (2) providcs d j i  + d i j  < 1 + (-1) = 0, and thus none of the created 
directed cyclcs has positive lengtli. By applying (2) wc obtain thc incquality 
dj lL = d j j  + Sj i  + dZl, < 0 + 1 + (-1) = 0 for thc modified distances d j h  with 
h E U. From (2) is also follows that dgh  = d g j  + bj i  + dZh < -1 + 1 - 1 = -1 
for the modified distances dgh  with g f U and Iz E U. 

Thus, we can introduce a minimum time lag d;"" = 0 for all i E U, i # j 
arid a minimum time lag dytir" 1 for all i f U such tliat the reduced 
set S& of time-feasible schedules belonging to expanded project network N' is 
nonempty. Since all cvents i E U occur before or at the same time as j and all 
cvents i f U must be scheduled (strictly) latcr than j ,  the active set A(S, Sj) 
at timc Sj  coincides with set U for all schedules S E S;. 0 

Lemma 2.20. If there is a minimal k-surplus set F E 3; with d i j  < 0 for all 
i E V,' \ F ,  2 E F n v;' or a minimal k-shortage set F E .Fi with dii < 0 
for all i E Vz \ F ,  j E F n  V,"-, then there exists a forbidden set F' for which 
j E F' implies i E F' for all i ,  j E v," U Vt- with d i j  > 0. 

Proof. Let F be a minimal k-surplus set with di j  < 0 for all i E V:- \ F, 
j E F n v,". We construct surplus set F' as follows. Wc first delctc all 
i E Vz- n F from F for which d i j  < 0 for all j E F n v;+. Sincc for none of 
the deleted cvcnts i there is some j E F' n VE' with di j  > 0, it holds that (1) 
d i j  < 0 for all i E V;- \ F', j E F'nv,"'. After the deletion of events i it holds 
that for any h E F' there is some j E F' n v:' with drbj > 0. Now consider 
distances dih for i E Vt- \ F' and h E Vz- n F'. For given h E Vz- n F', let 
j E F' n v,"' bc an event such that d h j  > 0. ( I )  provides 0 < di j  L dih + d h j  
for all i E Vz- \ F, which together with d h j  2 0 implies dih < 0. Thus, we 
have (2) dih < 0 for all i E V ;  \ F', h E F' n Vf- . 

Ncxt, we add all j E v;' \ F' to F' for which d j j ,  > 0 for some 
j' E F' n v{+, so that (3) d g j  < 0 for all g E v;+ \ F', j E F' n v;+. Lct 
j bc o m  of the added events and let j' E F' n v;+ be an cvent such that 
dj, ,  > 0. From (1) it follows that 0 > d i j ,  > di j  + d j j ,  for all i E Vz- \ F'. 
Due to d j j !  2 0, this implies d i j  < 0 for all i E Vl- \ F', and thus property 
(1) is preserved. The validity of property (2) is not affected by adding events 
j E v:+ \ F' to F' either. Finally, consider distances d h for g E v:' \ F' and 9 
h E F' n Vz-. For given h E F' n V;- , Ict j E F' n Vz be an cverit such tliat 
d h j  > 0. Using (1) wc have 0 > d g j  > dgh  + d h j ,  which then implies dgr,  < 0. 
Thus, it holds tliat (4) dgh  < 0 for all g E v:' \ F', h E F' n V:-. 
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The resulting set F' is a surplus set bccausc it ariscs from F by deleting 
events i E Vc- and adding events j E Vf. Morcover, from (1) to  (4) we have 
d,, < 0 for all i $ F' and all j E F', which proves thc asscrtion. The case of 
a minimal k-shortagc sct F can be dealt with analogously. 0 

The ncxt proposition, which translates the statement of Proposition 2.8 
to the case of cumulativc rcsources, charactcrizcs thc fcasibility of relations 
on thc basis of rclation network N(p). 

Proposition 2.21. Time-feasible relation p i n  Ve is  feasible if and only if for 
each min imal  k-surplus set F E 3:, relation network N(p) contains a directed 
path of lerqth d& > 0 from some node i E Vc- \ F t o  some node j E F n Vli 
and for each min imal  Ic-shortage set F E T i ,  relation network N(p) contains 
a directed path length d$ > 0 from some node i E v:+ \ F t o  some node 

- 
j E F n V , '  . 

Proof. Su f iczency:  Let p be a time-fcasiblc rclation satisfying thc conditions 
of Proposition 2.21. Sincc for cadi schedulc S E  ST(^) it holds that S, 2 S, 
for all ( i ,  j )  E @(D(P)),  Theorem 1.28 implies the resource-feasibility of all 
schedules S E ST(p). This mcans that &(p) Sc and thus  ST(^) S .  

Necessity: We assume that for some resource k E 727, there is a Ic-surplus 
set F such that df3 < 0 for all i E V L  \ F, j E F n v;'. Lemma 2.20 then 
provides some surplus set F' for which Lemma 2.19 cstablishes the existence 
of a time-feasiblc schedulc S such that A(S, t )  = F' for some t > 0, i.e., 
ST(P) g S. 0 

Now we are ready to prove the counterpart of Theorem 2.9 

Theorem 2.22. Time-feasible relation p in Ve i s  feasible if and only if n o  
u n i o n  of predecessor sets in O(D(p)) i s  forbidden,. 

Proof. S u f i c i e n c y :  Let p be a time-feasible relation for which no union of 
predecessor sets in O(D(p)) is forbidden. U is a union of prcdecessor sets in 
O(D(p)) precisely if for all i ,  j E Ve with d:j > 0, j E U implies i E U .  Since 
there does not exist any surplus set U with the latter property, Lemma 2.20 
iniplics that for each minimal surplus set F E 3:, there are two cvents 
i E V \ F and j E F n v," such that d:j > 0. Symmetrically it holds 
that for each minimal shortage set F E 3;, there are two events i E v;+ \ F 
and j E F n V i -  with df j  > 0. Proposition 2.21 then establishes the feasibility 
of p. 

Necessity: For any union U of prcdcccssor scts in @(D(p)),  it follows from 
Lemma 2.19 that there exists a schedule S E ST(p) with A(S, t )  = U for some 
t > 0. If U is a forbidden sct, schedulc S is not resource-feasible, which means 
that ST(p) g S .  0 
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Next we discuss how the fcasibility of a time-feasiblc rclation p can be 
chccked in polynomial time by using Theorem 2.22. The statement of the 
theorem can be reformulated in the following way: Time-feasible relation p 
in Ve is feasible precisely if for no j E V" there is a forbidden union U of 
predecessor sets in 0 = O(D(p)) containing j as maximal element of U in 0 
(compare proof of Lemma 2.19). For given j E Ve, such a set U is dcfined by 
properties (1) i E U implies h E U for all (h , i )  E 0, (2) j E U, and (3) j is 
a maximal clcmcnt of U in 8, i.e., for all i E U, (j, i) E 0 implies (i, j )  E 0. 
The latter condition is cquivalcnt to i $ U for all i E V" with ( j , i )  E 0 and 
(i, j) $ 0. Now let xi be a binary decision variable indicating whether or not 
event i E V" is contained in U .  Then we have (1) xh 2 xi for all (h, i )  E 0, 
(2) 2, = 1, and (3) xi = 0 for all i E Ve with ( j , i )  E 0 and ( i , j )  $ 0. Thc 
set U belonging to incidence vector x = (x i ) iEve  is forbidden exactly if for 
some k E RY, CiEu ri,+ < Rk or CIEU rik > R k .  Thus, the problem of testing 
the feasibility of p can be solved by verifying, for each event j E Ve and each 
resourcc k E RY, whether or not there exists a binary vector x satisfying 
constraints (1) to (3) such that XiEve  r.;kxi is less than safety stock l?,, or 
greater than storage capacity R k .  For givcn event j and resourcc k, chccking 
whcthcr the storage capacity of k might be violated at the occurrence of j can 
be achieved by solving the following binary program. 

Maximize rikxi 
t € V r  

subjcct to xh - xi > 0 ((h, i )  E 0 : h # i)  
xj  = 1 (2.2) 

xi = 0 (i E Ve : ( j , i )  E 0, (i, j) $ 0) (3) 

xi E {O,1) (i E Ve) 

Thc coefficient matrix of constraints (1) coincides with the negative transposed 
incidence matrix of the directed graph G j k  with nodc set Ve and arc set 
H \ {(i, i )  I i E V"}. That is why the coefficient matrix of constraints (1) to (3) 
is totally unirnodular, and the integrality condition (4) for variables xi can be 
replaced with 0 5 xi < 1 (i E V"). As a consequence, problcm (2.2) can bc 
fornlulated as a linear program. In the sequel, we show that the dual of this 
linear program reprcscnts a minimum-flow problem. 

Let i E Ve be some predecessor of j in 0. Then it follows from (1) and 
(2) that xi = 1. Conversely, let j be predecessor of some i E V" in 0 with 
(i, j) $ 0. Then (3) implies that x, = 0. The variables xi with fixcd value 1 
or 0 can be eliminated as follows. If zi  = 1 because ( i , j )  E 0, thc transitivity 
of rcflcxive preorder 0 provides (h, j )  E 0 and thus xr, = 1 for all (h, i) E 0. 
Symmetrically, assume that xh = 0 because (j, h) E H and ( h , j )  $ 0. Then 
the transitivity of 0 implics that ( j ,  i )  E 0 and (i, j) $ 0 and thus by (3) xi = 0 
for all (h , i )  E 8. Hcncc, constraint (1) can be restricted to variables z ;  for 
which (i, j) $ 0 and variablcs xh for which (j, h) $ 0 or (h, j) E 0. Otherwise 
we would have X I ,  = 1 or x; = 0, which implies (1). For those variables x,  
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and x,, we can furthcrmore assume that ( j ,  i )  I$ 8 and (h, j )  I$ 8 because 
else again xi = 0 or x,, = 1. Now let V," := {i E Ve I (i, j ) ,  ( j ,  i )  $ 8 )  be 
the set of all events i for which the value of xi is not fixed in advance. Then 
constraint (1) needs only be considered for pairs (h,  i)  E 8 with h # i and 
h , i  E V,e. is the set of all i E V" that are incomparable with j in 8. We 
note that due to  Remark 1.6b, {O,n + 1) n V,e = 0 for all j E V,", and in 
particular V; = e+l = 0. By 6, := 6 n (V," x VjJ) we denote the sub-preorder 
of 0 induced by set y. We obtain the following statement of problem (2.2) as 
a linear program, where the additivc constant C(,,J),o rik is omitted in the 
objective function. 

Maximize x ~ n x ,  
zEV; 

subject to z,, - z, 2 0 ((h, i )  E Qj : h # i )  I (2.3) 

O < x i < l  ( i E Y )  

Now let s and t be a source and a sink to be added t o  directed graph Gjk. - 
B y q k  = (Vj ,Qj)  whe rev j  := V,"~{s,t)  and& := B j ~ ( { s } x ~ ) ~ ( V , " x { t ) )  
we denote the directed graph that results from Gjk by adding arcs (s,  i)  and 
(i ,  t )  for all nodes i E V,". The dual of (2.3) can be formulated as the following 
minimum-flow problem in GJk with supplies r ,k  a t  nodes i E VJe, where @(u)  
denotes the value of flow u: 

Minimize q5j (4 = x ,it 
subject to  x ui,, - uhi = 7.i' ( i  E y') 

(i , l~)t8~:h#i (h,1)€8, :hf i 

u l~ i  > 0 ((h, i)  E 8, : h # i)  ) 
Problem (2.4) can be solved in 0 (n3 )  time by first substituting supplies r i k  at 
nodes i into appropriate upper arc capacities (see, c.g., Bang-Jcnscn and Gutin 
2002, Section 3.2) and then solving the minirnurn-flow problem with vanishing 
supplies (cf. Subsection 2.1.1). Let dk be some flow solving minimum-flow 
problem (2.4). Then the optimal objective function value for problem (2.2) 
equals C(,,3),o ri' + @ ( ~ j ~ ) ,  which is equal to the maximum inventory level 
in resource k at  the occurrence of event j .  

For testing whether the inventory might fall below the safety stock, we 
solve the minimum-flow problem where supplies r i k  a t  nodes i E V," are re- 
placed with -rik. With $' designating a corresponding minimum ( s ,  t)-flow, 
the optimal objective function value for (2.2) with "Minimize" instead of 
"Maximize" equals C(i,j)te r i k  - @(gk),  which coincides with the minimum 
inventory lcvcl in resource k at the occurrence of event j .  p is feasible if for 
all events j E Ve and all resources k E 727, 
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In sum, checking the feasibihty of a relation p takes (9(|7^^|n^) time (recall 
tha t the time-feasibility of p can be verified in 0{n[m-\- \p\]) t ime). 

We illustrate the verification of feasibility for a relation by considering an 
example. 

Example 2,23. Figure 2.2a shows a project network with five events and one 
cumulative resource for which we assume a safety stock of ^ = 0 and a storage 
capacity of i^ = 2. The node labels provide the respective resource require­
ments. We consider the empty relation p = 0. The reflexive preorder induced 
by D ( p ) = D is ^ = { ( 0 , 1 ) , (0,2), (0,3), (0,4), (1,4), (2,3) , (2,4) , (3,2) , (3,4)} 
U {(i,2) I i G V^}. When checking against the storage capacity for event 
j = 1, we obtain the flow network Gi depicted in Figure 2.2b, where nodes 
i e V^ are labelled with supplies r^. In the minimum (5,^)-flow u^, one unit 
is shipped from node 3 to node 2, and thus the minimum flow value (/)^{u^) 

= 2. Figure 2.2c shows the 

2 and j = S with a mini-

equals 0 and X^(^^i)^^n + 0i(u^) = ro + r i + 0 

flow network G2 — Gs belonging to events j 
mum flow il^ — # of value (jp'ivi?') = (j>^{u^) = 2 and ^ / ^ 2)^9 *̂ "̂  (^'^{u^) 

E (i,3)G6> r^ -h 0 (li ) = To + r2 + ra -I- 2 = 2. By inverting the signs of 
the supplies, we obtain the minimum-flow problems for testing against the 
safety stock. The corresponding flow values are (t)^{'u}) = 0 and (l)'^{u^) = 
(j)'^{^) = 0. Accordingly, we have Yl>(i,i)ee ^i — 0^(M^) = "̂ o H- ̂ i — 0 = 2 and 

E(i,2)G0 Ti - 0^fe^) = E(i,3)G^ ^̂  ~ ^^(^^) = To + r2 + r3 - 0 = 0, which shows 
the feasibility of relation p. 

— 1 

Fig. 2.2. Verification of feasibility: (a) project network; (b) minimum (s,^)-flow in 
network Gi\ (c) minimum (5,t)-flow in network G2 — G3 

We close this subsection by considering reflexive preorders in set V^ tha t 
are induced by some schedule. As we shall see, the results for schedule-induced 
strict orders in set V^ carry over to schedule-induced reflexive preorders in 
set y ^ 

Def in i t ion 2 .24 (Schedule - induced reflexive preorder) . Given a sched­
ule S, reflexive preorder 0{S) := {(i, j ) e V^ x V^ \ Sj > Si} is the schedule-
induced reflexive preorder which corresponds to the precedence relationships 
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established by S. ST(Q(S)) i s  again called the  schedule polytope of schedule S ,  
and  N(8(S)) i s  t h e  schedule network of S .  

Due to their completeness, schedule-induced reflexive preorders 8(S) are 
reflexive weak orders. Proposition 2.12 saying that 8(S) is feasible precisely if 
S is feasible also applies to schedulc-induced reflexive preorders. Analogously 
to Proposition 2.13 it can also be shown that the c-maximal feasiblc relations 
in set Ve are induced by feasible schedules. Let 8 bc some schedule-induced rc- 
flexive preorder in Ve and let cqual-prcorder set SF(8) := {S E ST I 8(S) = Q) 
again denote the set of all time-feasible schcdules inducing 8. Similarly to the 
case of rcncwablc rcsourccs, set S of all feasible schedulcs can again be repre- 
sented as the union of nonintersecting equal-prcordcr sets. 

Proposition 2.25. Let  S Z P  be the  set of all feasible schedule-induced reflex- 
ive  preorders. T h e n  {SF(O) / 8 E SIP) i s  a partit ion of S .  

Again, it can bc shown that cach minimal point (resp. vertcx) of an equal- 
preorder set is a minimal point (resp. vcrtex) of some schedule polytope and 
vice versa (see Proposition 2.16). 

2.2 A Classification of Schedules 

In machine and project scheduling without maximum timc lags, different finite 
sets of minimal-point schedulcs havc been used for the optimization of regular 
objective functions (see, eg . ,  Baker 1974, Sect. 7.2, for a study of nondelay, ac- 
tive, arid serniactive schedules in machine scheduling and Sprecher et al. 1995 
for the generalization of those concepts to projcct scheduling with renewable 
resources). Based on the feasible relations discussed in Subsection 2.1.1, thc 
classification of Sprccher et al. (1995) has been extended by Ncumann et al. 
(2000) to project scheduling problems with general temporal constraints and 
nonregular objective functions. This section rcfcrs to thc latter classification 
of schcdules. 

All resource allocation methods discussed in this book arc based on one of 
the two basic representations of set S ,  either as a covering by relation poly- 
topes or as partition by equal-preorder sets (where the term equal-prcorder 
set may also designate an equal-order set). The schedules to be dealt with in 
Subsections 2.2.1 and 2.2.2 rcfer to the first and to the second representations, 
respectively. 

2.2.1 Global and Local Extreme Points of the Feasible Region 

Let M c ST be a rionempty set of time-feasible schedules. S E M is a 
(global) extreme point of M if there are no two schedules S1, Sf' E M such 
that S = crSf + (1 - c r ) S I f  for sornc 0 < a < 1. If M is a polytope, each 
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extreme point is a vertex of M and vice versa. We say that S E M is a local 
extreme point of M if S is an extreme point of M n B,(S) for some E > 0, 
whcrc B,(S) = {S' E Rnf2  I IIS - Slla < E )  is the ball of radius E around S 
in Rn+2. Recall that S E M is a minimal  point of M if thcre is no schedule 
S' E M with S' < S. We notice that a minimal point of M need not reprcscnt 
a local extreme point of M. As we will see later on, cach minimal point of a 
relation polytope M = ST(p), however, is a local cxtrcme point of M. 

Definition 2.26 (Active, stable, and pseudostable schedules). A (fea- 
sible) schedule S i s  called active, stable, o r  pseudostable if S i s  a min imal  
point, a n  extreme point, o r  a local extreme point, respectively, of S. AS, S S ,  
and PSS denote the sets of all active, all stable, and all pseudostable sched- 
ules. 

Active schedules have been introduccd by Giffler and Thompson (1960) for 
solving opcn-shop problems with precedence constraints among operations 
and regular objective functions. In shop-floor scheduling, there is a one-to- 
onc corrcspondence between job scquences on the machines and semzactive 
schedules, for which no operation can be processed earlier without changing 
the job sequences. Those semiactive schedules (as well as their analogues in 
project scheduling) are precisely the rnininial points of components of S, and 
every active schedule is scmiactivc. 

Since each active, stable, or pseudostable schcdulc is a vertex of some 
relation polytope, the sets AS,  SS, and PSS arc finite. Neumann et al. (2000) 
provide an example of a project for which therc is an active schedule that is 
not stable. However, each active schedule is pscudostablc, which can be seen 
as follows. Assume that there exists some schedulc S E A S  \ P S S .  Since 
S is not pscudostablc, wc can find an open line segment e passing through 
S that totally belongs to S .  The representation of S as a union of finitely 
many polytopes implies that l can be chosen such that all points on e are 
boundary points of S ,  i.e., e 5 dS. With z E [-I, 1ITd2 being the direction of 
e c S + R z ,  the minimality of S in S implies that z f [O, I ] " + ~ .  It then follows 
from C d S  that all schedules on e are minimal points, which contradicts 
the finiteness of AS. Figure 2.3 summarizcs the relationships between thc 
schedule sets introduced. 

In Ncumann et al. (2000) it is shown by transformation from PARTITION 
that for the case of renewable resources, it is NP-hard to dccidc whether or not 
a given schedule is activc, stable, or pseudostable. Since renewablc-rcsourcc 
constraints can be expressed by temporal and cumulative-rcsource constraints 
without changing the ordcr of magnitude of the problem size, this result also 
applies to project scheduling with cumulative resources. 

2.2.2 Vertices of Relation Polytopes 

All schedules considered in Subsection 2.2.1 represent vertices of C - m a x i m a l  
rclation polytopcs. We now turn to vertices of arbitrary rclation polytopes. 
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Legend: 

A + B rriearls A > B 

Fig. 2.3. Relationship between sets of schedules 

Since each vertex of a relation polytope corrcsponds to some timc-feasiblc 
schedule that is a vertex of its schcdulc polytope, we may restrict ourselves 
to (arbitrary) schedule polytopes. 

Definition 2.27 (Quasiactive and quasistable schedules). A feasible 
schedule S is  called quasiactive o r  quasistable if S i s  the min imal  point o r  
a vertex, respectively, of i t s  schedule polytope ST(Q(S)).  QAS and QSS de- 
note  the sets of all quasiactive and all quasistable schedules. 

Since the minimal point of a relation polytope is always a vcrtcx, any quasi- 
active schedule is quasistablc as well. 

A schedule S is quasiactive precisely if no noncmpty set of activities can 
be scheduled earlier without deleting at least one prcccdencc rclationship 
(i, j )  E Q(S) or violating some temporal constraint. Schedulc S is quasistable 
exactly if there is no nonernpty set of activities which can be scheduled both 
earlicr and later such that all prcccdencc rclationsllips ( i ,  j) E Q(S) and all 
temporal constraints are observed. The next proposition provides an equiva- 
lent formulation of thc latter observation, which will be useful when dealing 
with algorithms operating on the sets &AS and QSS of all quasiactive and 
all quasistable schcdulcs in Chapter 4. 

Proposition 2.28 (Neumann et al. 2000). A feasible schedule S i s  

(a) quasiactive i f  and only if there exists a spanning outtree G = (V, EG) o j  
Q(s) i ts  schedule network N(Q(S))  rooted at node 0 such that Sj - Si = dij 

for all arcs ( i , j )  E Ec,  
(b) quasistable i f  and only if there exists a spanning tree G = (V, EG) of i t s  

Q ( S )  schedule network N(B(S)) such that Sj -St = dij for all arcs ( i ,  j )  E EG. 

From Proposition 2.28 it follows that the quasiactiveness and thc qua- 
sistableness of a givcn schedule can be checked in polynomial timc. A furthcr 
implication of Proposition 2.28 is that any quasistablc schcdule (and thus any 
quasiactivc schedule as wcll) is intcgral and that any quasiactive schedule S 
satisfics 
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Obviously, active schedules are quasiactive, and pseudostable schedules are 
quasistablc. Figure 2.4 locates the quasiactive and quasistable schedules 
within the framework of the scliedule sets introduced before. 

Legend: 

A + 13 means A > B 

Fig. 2.4. Relationship between sets of schedules, revisited 

2.3 Objective Functions 

An objcctive function f : ST + R associates each time-feasible schedulc S 
with a numerical assessment f (S). Recall that we have assumed f to be lower 
semicontinuous and thus f takes its minimum on compact set S if S # 0. 
Whereas regular objective functions f ,  which are comporientwise nondecreas- 
ing, refer to temporal objectives of project planning likc minimizing thc proj- 
cct duration, nonregular objective functions typically translatc some monetary 
goals such as minimizing inventory holding or capacity adjustment costs or 
maximizing the net present value of the project. In this scction wc are going 
to study several classcs of objcctivc functions, which cover a large variety of 
rcsourcc allocation problems in project management. Bascd on the results of 
Sections 2.1 and 2.2 wc provide for each class a finite set of scliedules contain- 
ing at least oric optimal schedulc if S # @. In Subscction 2.3.1 we consider 
objective functions that can be minimized efficiently on relation polytopes. 
Subsection 2.3.2 is concerned with objective functions for which in general al- 
ready the time-constrained project scheduling problcm is NP-hard. The latter 
objective functions are typically cncountcred when solving resource levelling 
problems, where thc problcm amounts to minimizing thc variability in resource 
loading profiles of renewable resources (expressed in terms of range, variance, 
or total variation). Whereas resource allocatiori problems with objective func- 
tions from Subsection 2.3.1 can be solved by enumerating 2-minimal feasible 
relations, minimizing objective functions from Subsection 2.3.2 requires the 
investigation of arbitrary schedule-induced preorders. For certain of the lat- 
ter objective functions, however, the search for an optinial schedule can be 
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limited to schcdulc polytopes belonging to C-rnaxirnal schedule-induced pre- 
ordcrs. Thc latter objective functions will be studied in Subsection 2.3.3. 

2.3.1 Regular and Convexifiable Objective Functions 

Consider some nonempty relation polytope ST (p). Any regular objective func- 
tion is minimizcd by thc uniquc minimal point minST(p) of ST(p), which co- 
incides with the earliest schedule belonging to relation network N(p). Now let 
f bc some convex (and due to our lower serriicoritiriuity assumption) contin- 
uous objcctive function. Then finding a minimizer of f on ST(p) can, under 
somc mild technical assumptions, be achicvcd in polynomial time, e.g., by 
the ellipsoid method (cf. Grotscliel et al. 1998, Sect. 4.1) or, more cfficiently 
on the average, by interior-point methods based on self-concordant barriers 
for ST(p). Self-concordant barriers are available for different classes of con- 
vex functions (sce thc book by Ncsterov and Nemirovskii 1994 for details). 
The next definition provides a class of objective functions which admits a 
smooth coordinate transforniation such that the resulting time-constrained 
project schcduling problem is a convex programming problem. Recall that a 
bijection ip is called a C1-diffe~mor~hisrn if both p and ip- l  arc continuously 
differentiable. 

Definition 2.29 (Convexifiable and linearizable objective functions). 
Let f : ST -+ E% be some objective function. W e  call f conuexijiable if 
there exists a C1-diffeomorphism cp : ST + X from ST onto some Eu- 
clidean space X such that f o p-' is a convex function and the images 
p(ST(p)) = {p(S) I S E ST(p)) of all relation polytopes under ip are con- 
vex sets. I f f  o ip-' is linear, we speak of a linearizable objective function f .  

Trivially, each convex objectivc function is convcxifiable and each linear objec- 
tive function is linearizable. In addition, we notice that due to the continuity 
of ip-l, all images p(ST(p)) are compact sets and because ST is a relation 
polytopc, sct X = p(ST) is convex. 

A time-fcasiblc schedule S E M C ST is called a local minimizer of f on 
M if for some E > 0, S is a rninirriizer of f on the relative ball M n B,(S) 
around S in M (for the basic concepts of relative topology in Euclidean spacc 
nccded for what follows we refer to Sydszter et al. 1999, Ch. 12). Roughly 
speaking, the reason for the tractability of time-constrained project scheduling 
with convex objectivc functions is that each local minimizer of f on a relation 
polytope ST(p) minimizes f on ST(p). The next proposition relates the sched- 
ule sets introduced in Subsection 2.2.1 to regular and convcxifiable objective 
functions. It also shows that, as for convex objcctivc functions, any convexi- 
fiable objective function f can bc minimized on relation polytopes ST(p) by 
computing a local minimizer of f on ST(p). 

Proposition 2.30. Let f be some lower semicontinuous objective function 
r ~ n d  assum.e th,at S # 0. 
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(a) Iff is regular, the set of active schedules contains an optimal schedule. 
(b) Iff is linear, the set of stable schedules contains an optimal schedule. 
(c) I f f  is linearizable, the set ofpse,udostable schedules contains an optimal 

schedule. 
(d) I f f  is convexifiable, any set containing a local minimizer o f f  for each 

(c-maximal) relation polytope contains an optimal schedule. 

Proof. (a) and (b) arc obvious. We first show (d). Let S bc a local mini- 
mizer of f on somr relation polytopc  ST(^). Then there exists some E > 0 
such that f (S) < f (S') for all S' E ST(P) n BE(S).  With x = cp(S) and 
x' = cp(S1) this mcans that (f 0 cp-')(x) = f (S) 5 f (S') = ( f  0 cp-')(XI) 
for all x' E cp(ST(p) n BE(S)).  From the injectivity of cp we can infcr that 
cp(ST (p) n BE (S))  = cp(ST (p)) n p(B,(S)), wherc it follows from the continu- 
ity of cp-l that cp(B,(S)) is open. As a consequence, there cxists some E' > 0 
such that thc ball B:,(x) with radius E' around x in X is included in p(B,(S)). 
This implies that x is a minimizcr of f o cp-' on set cp(S~(p))  n B:, (x), i.e., a 
local minimizer off ocp-' on cp(S~(p)) .  Sincc by assumption f op-' is a convex 
function and p(ST(p)) is a convcx set, x is also a (global) minimizer of f op-' 
on cp(ST(p)), i.e., f (S) = ( f  o cp-l)(x) < (f o cp-')(XI) for all 3:' E cp(S~(p)) .  
Thus, wc havc f (S) < f (S') for all S' with x' = cp(S1) E cp(S~(p)) ,  or, equiva- 
lently, f (S) < f (Sf) for all S' E  ST(^). As a conscqucnce, any local minimizer 
o f f  on some relation polytope ST(P) minimizes f on the total polytope ST(P). 
From Propositions 2.5 and 2.18 it follows that cp(S) = ( P ( U ~ ~ ~ ~ R S ~ ( P ) )  = 
upEMFRP(ST (p) )) , which proves the assertion. 

We now show statement (c). Since f o p-' is linear on X,  there exists somc 
extreme point x of p(S)  C X that minimizes f o cp-' on p(S) .  Now assume 
that S = p-'(2) is not a local extreme point of S .  Thcn there is an open line 
segment t c S containing S .  Since cp-' is continuous and p is injcctive, this 
means that x is a relative interior point of cp(t) c p(S),  which contradicts thc 
fact that x is an extreme point of cp(S). 0 

Neumanri et al. (2000) have considered quaszconcave objective functions 
and so-called bznary-monotone objcctivc functions. An objective function f 
is said to be quasiconcave if its upper-level sets U, = {S E ST I f (S) 2 a )  
arc convex for every a E R (see, e.g., Avriel et al. 1988, Sect. 3.1). f is 
termed binary-monotone if f is nondccrcasing or nonincreasing on each linc 
scgmcnt in binary direction z E (0, 1}TL+2. A quasiconcave function attains its 
minimum on a compact sct M at an extreme point of M becausc on closed 
line segments, the function is minimized at one of the two endpoints. That is 
why there always exists a stable schedule that minimizes f on set S if f is 
quasiconcave and S # 8. Since each relation polytopc ST(p) arises from the 
intcrscction of finitely many half spaces {S E I So = 0, S3 - Sz 2 df') 
whcrc ( a , ~ )  E E U p, binary-monotonc objectivc functions, like the linearizable 
objective functions, always posscss a vertex of ST(p) among their nlinirniz- 
ers on ST(p). Thus, binary-monotone objective functions arc minirnizcd by 
pseudostable schedlil~s. Unlike the case of convexifiahle objective functions, 
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however, a local minimizer of a quasiconcave or binary-monotone objective 
function f on some relation polytopc is generally not a global minimizer of f 

on ST ( P ) .  
We procccd by providing examples of regular and convexifiable objective 

functions tliat are of interest in project scheduling. Thc simplcst and most 
frequently uscd regular objective function is the makespan or project duration 

Thc project duration problem with rcncwablc resources has been extensively 
studied in the literature during the four last decades (see Subscction 3.1.4 for 
an overvicw). Minimizing tlie project duration is a suitable objective if tlie 
majority of income payments occur at or aftcr thc end of the project, if the 
project dcadlinc is tight and thus finishing the implementation of the project 
as carly as possibly lowers the danger of cxceeding the deadline, or if resource 
capacity is needed for future projects (cf. Kolisch 1995, Sect. 2.1). 

A sccond regular objective function is the total tardzness cost 

whcrc d, E Z>o - denotes a given duc date for thc completion of activity i 
and W: E Z>o is the cost arising from a latc complction of activity i per 
unit time. T ~ S  objcctivc function is of particular intcrest for applications of 
resource allocation methods in make-to-order production scheduling, which 
will be discussed in Section 6.1. In tliat case, each real activity corresponds 
to the processing of a job on a machine, and violations of the delivery dates 
for the completed jobs incur conventional penalty per unit time. 

We now turn to convexifiablc objective functions. Of coursc, any linear and 
any convex objectivc function is convexiiiable. A nonrcgular linear objectivc 
function is the total znventory holdin,g cost 

where wc assume that each cunmlative rcsource k stands for the invcntory in 
a storage facility keeping one intermediate or final product with unit hold- 
ing cost rate C I ,  E Z>O. Then f ( S )  represents the cost arising from the stock 
in planning interval-[0,2]. The linearity of f can bc seen as follows. A re- 
plenishment of resource k by r,k units at timc S, incurs a holding cost of 
c I , T , ~ ( X  - S t ) .  A depletion of k by -r,k units at time S, saves a holding cost 
of CI,  ( -r ik)  (2 - S Z ) .  Thus, thc total inventory holding cost f ( S )  can also be 
written as 2CkERr ck CitVe Ti\< - CkcR7 ck CZEVc r i k s i  

In general, certain activities and events i of a project are associated with 
a cash flow cf E Z, which may be a paying out for raw materials or workforce 
or a paying in arising at thc corripletiori of a task when reaching a milcstonc. 
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When evaluating thc profitability of a long-term project, the cash flows have 
to bc discountcd by some intcrcst ratc a,  which can, e.g., be chosen to be the 
minirnurn attractive rate of return. The sum of all cash flows discounted to 
time 0 is called the net present value of the project. For thc sake of simplicity, 
we sup ose that all cash flows are discounted contiriuously and that each cash P .  flow c, a r m s  at time S,. The factor by which cash flow cf is discountcd 
then equals e-"'., and thus the net present valuc dcpcnds on the schedule S 
according to which the project is pcrformcd. By minimizing the negative net 
prcscnt valuc 

wc obtain a schedule that maximizes the financial benefit of the project in 
terms of its net present value. Grinold (1972) has shown that the (negative) 
net present value is a linearizable objcctivc function. Let cp : ST + X C I P 2  
be defined as cp(S) = (cp,(S)),Ev where cp,(S) = ePaS1. With x, = cp,(S), the 
tcmporal constraints S, - S, 2 6,, can be stated as x, - e-"6qx, 5 0 and 
So = 0 becomes xo = 1. Thc linearized objective function is (f o cp-l)(x) = 

- CLEV ~Zfx,. In addition, the net present value function f is binary-monotone 
because f is differentiable and for any time-feasiblc schedule S and any binary 
direction z E (0, 1)r1+2, the directional dcrivative of f at a point S + a z  E ST 
in direction z is df Is+oZ(z) = e-a"df Is(z) (sec Subsection 3.2.2 and Neumann 
et al. 2003b, Sect. 3.3). 

A convex objective function considered in projcct management is the total 
earlmess-tardmess cost 

where w: and w: respectively denote the cost per unit time incurred by an 
carly or a late completion of activity i E V with respect to given due date 
d, E Z>o (see, e.g., Schwindt 2000c or Vanlioucke et al. 2001). Another cxam- 
ple of a convex objective function is the negative total weighted free float of 
the project 

f (S) = C uiS ( rnax [Sj + - mi* [S; - dij]) 
i E V  ( j , i ) tE  ( i , j ) E E  

For given schedule S, the total weighted free float of thc projcct is the weighted 
sum of all early and late free floats of activities i E V if thc carlicst and latest 
start times ES, and LS, arc sct to bc cqual to S, (cf. Subsection 1.1.3). A 
schedule with maximum total wcightcd free float can be regarded as robust 
in the sense that when executing the project, deviations of individual start 
times S, from schedule will minimally affect the start times of other activities. 
In Scction 6.5 wc shall discuss how the total weighted earliness-tardincss and 
total weighted free float objective functions can be used for project scheduling 
under ~lncrrtainty. 



60 2. Relations, Schedules, m d  Objective Functions 

Before concluding this subsection, we notice that all objective functions 
discussed above are continuous, which of course implies their lower scmicon- 
tinuity. 

2.3.2 Locally Regular and Locally Concave Objective Functions 

In this subsection we move on to objective functions that are regular or con- 
cave or1 individual equal-preorder sets. Thosc objcctive functioris play an im- 
portant role for rcsource Icvelling, where one strives at smoothing loading 
profiles r k ( S ,  .) of renewable resources k E RP over tirnc. Resource levelling 
problems typically arise when resource capacities may, at a ccrtairi cost, be 
adapted to the respective requirements. In that case, thc resource capacities 
arc regarded as bcing unlimited and the problem is to find a feasible minirnum- 
cost schedulc. Howcvcr, bcsidcs thc cost point of view, levelling loading profiles 
ovcr timc is of intcrcst in its own right bccause in practice, evenly used re- 
sources tend less to be subject to disruption than resourccs whose usage is 
highly fluctuating ovcr timc. Accordingly, it has been proposed to use rcsource 
levelling as a technique for capacitated master production scheduling in pro- 
duction planning, whcre for a planning horizon of about one year, thc monthly 
production quantities matching the gross requirements for thc main products 
of a company are determined (see Franck et al. 1997, Neumann and Schwindt 
1998, and Scction 6.2). 

Definition 2.31 (Locally regular and locally concave objective func- 
tions). Let f : ST -+ R be some objective function. W e  call f locally regular, 
if f is regular on all equal-preorder sets. f is termed locally concave if f is 
concave on all equal-preorder sets. 

The following proposition establishes thc connection between locally rcg- 
ular and locally concavc objective functions arid the sets of quasiactive and 
quasistable schedules introduced in Subscction 2.2.2. 

Proposition 2.32 (Neumann et al. 2000). Let f be some lower semicon- 
tinuous objective function and assume that S # @. 

(a) I f f  is locally regular, the set of quasiactive schedules contains an optimal 
schedule. 

(b) I f f  is locally concave, the set of quasistable schedules contains an, optimal 
schedule. 

Proof. The lower semicontiriuity of f and the compactness of S imply that f 
attains its niinirnurri on S. We first show statement (a). From the rcgularity 
of f on equal-preorder sets we can conclude that this minimum is taken at the 
minimal point of some equal-preordcr sct, which at the samc timc represents 
the minirrial point of some schedule polytope (see Proposition 2.16, which 
applies to cuniulative resources as well). We now show statement (b). From 
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the concavity off on equal-preorder sets it follows that f assumes its minimum 
at a vertex of some equal-preorder set. Proposition 2.16 says that this vertex 
is also a vertcx of a schedulc polytope. 0 

In contrast to regular or convexifiable objcctivc functions, locally regular 
and locally concavc objcctivc functions cannot be minimized efficiently on rc- 
lation polytopes in gcncral. In particular this means that a resource allocation 
problem with a locally rcgular or a locally concave objective function gcnerally 
docs not becornc more tractable when the rcsourcc constraints are deleted. Bc- 
low we shall give an example of a locally regular objectivc function for which 
time-constrained projcct scheduling is NP-hard. Note that minimizing such a 
function on an equal-preorder set constitutes an easy (though possibly unsolv- 
able) problem because any equal-preorder set possesses at most one minimal 
point. Concerning locally concave functions, it is well-known that alrcady the 
minimization of concave functions on hypercubes is NP-hard (cf. Horst and 
Tuy 1996, Sect. A.1.2). Proposition 2.28 indicates a simple way of gcncrating 
all quasiactive or all quasistable schedules by constructing all spanning out- 
trees rooted at node 0 (resp. spanning trees) of relation nctworks belonging 
to feasible schcdulc-induced preorders. A corresponding schcdulc-generat,ion 
scheme will be discussed in Section 4.1. 

Next we consider locally regular and locally concave objective functions of 
rcsource levelling problems that havc bccn discussed in literaturc. Thc objec- 
tive functions express the variability in the utilization of renewable resources 
ovcr time in terms of the range, the variance, and the total variation, respec- 
tively, of the loading profiles rk(S, .) of renewable resources k E RP. 

An example of a locally regular objective function is thc total procurement 
cost for renewable resources 

where ck t Z>O denotes the unit procurcmcnt cost of renewable resourcc 
k E RP. The total procurement cost equals the weighted sum of thc maximum 
resource requirements (or, in other words, thc wcighted sum of the ranges of 
the loading profiles r k  (S, .)) . 

Proposition 2.33. The total procurement cost f is a lower semicontinuous 
and locally regular objective function. 

Proof. The lower scmicontinuity can be seen as follows. Let S bc somc timc- 
fcasible schedule. The closedness of relation polytopes  ST(^) with p @(S) 
implies that therc cxists some E > 0 such that @(Sf) 5 @(S) for all S' containcd 
in the relative ball B,(S) nST in ST, around S. Since for each resource k t R", 
rnax,,<,<;l r k  (S, t) coincides with thc wcight of a maximum-weight antichairi in 
Q(S), weobtain f (S') > f (S) for all S' E B,(S)nST. The lower semicontiriuity 
now follows from the fact that f is lower semicontinuous precisely if f (S) 5 
liminfs,,s f (S') for all S E ST (see, e.g., Hiriart-Urruty and LcmarCchal 
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1993, Sect. A. l ) .  Since f (S) equals the weight of a maximurn-weight antichain 
in Q(S),  f is constant and thus rcgular on equal-order sets. 0 

Thc total procurement cost is the objectivc function of the resource in- 
vestment problem iritroduced by Mohrirlg (1984). Thc rcsource investment 
problem arises in applications where installing resources incurs fixed trans- 
portation or setup costs pcr unit capacity. The recognition version (i.c., the 
question whether there is a feasible solution whose objectivc function value 
is smaller than or equal to a given threshold value, scc, c.g., Papadimitriou 
arid Steiglitz 1998, Sect. 15.2) of a resource investment probleni with one re- 
source coincides with thc feasibility version (i.c., thc question whether there is 
a feasible solution) of thc corresponding rcsource-constrained project duration 
problcm. Thc latter dccision problem has bccn shown to be NP-cornplete by 
Theorem 1.12, which implies that the resource investment problem is NP-hard 
cvcn if Rk  = cm for all k E R P .  A classical objectivc function in the field of 
resourcc lcvclling that has bccn studied since the early work of Burgess and 
Killchrew (1962) is the total squared utzlzzatzon cost for renewable resources 

d whcrc cl; E Z>o. Since workload rk(S, t )dt  = CZEva rZkpZ does not depend 
on schedule $ f (S)  equals the weighted sum of the varzances of the loading 
profiles r k  (S, .) plus a constant. 

Propos i t ion  2.34. The total squared utilization cost f is a lower semicon- 
tinuous and locally concave objective function. 

Proof. The lower scrnicontinuity of f follows from its continuity. We show 
that f is concave on cqual-order scts. For given schedule S, let AC(S) be the 
set of antichains in strict order 0(S),  let rk(U) = CiEu ~ i k :  be the weight 
of aritichain U E AC(S), and let p(U, S) = J;:A(S,t)=u dt be the timc during 

which precisely the activitics i E U overlap in time given schedule S .  By 
,wk (U, S )  = rk (U)p(U, S )  we denote the corresponding workload on rcsourcc 
k E R". The total squared ~itilization cost can then be written as f(S) = 

C k E R p  ~k CuEAc(s) rk(U)wk(U, S) .  
Now consider two schedules S and S1 inducing the same strict order Q(S)  = 

8(S1). For any cu E [ O , l ]  we have AC(S) = AC(S1) = AC(aS+ (1 - a)S1) .  With 
respect to schedule S, the activities i from a nonempty antichain U E AC(S) 
overlap during p(U, S) = miniEu Ci - maxiEu Si > 0 units of timc, wherc 
p(U, S) = p(U, S) if U is C-maximal in AC(S). Since function p(U, .) is con- 
cave on ST(Q(S)) ,  we have p(U, aS + (1 - cu)S1) > ap(U, S) + (1 - a)p(U, S t ) .  
Consequently, wk(U, aS + (1 - a)S1) > awk(U, S )  + (1 - a)wk(U,  S1) for all 
C-maxirrial arlticliains U E AC(S) and all k E R P .  AS CuEAC(S) wk(U, S) = 

CvEAc(s) wk(U, S1) = CI/EAC(S) wk(U, + (1 - a)S1) = XiEr/ rikpi for 
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all k E RP, a positive difference wk (U, crS + (1 - a)S1) - [cr,wk (U, S) + 
(1 - a)wk(U, S')] for the latter antichains U weighted by rk(U) corresponds 
to an equally large negative difference for the remaining (not C-maximal) 
antichains U' c U weighted by rk(U1) < rk (U)  By recursively applying 
the above reasoning to the function which arises from f by deleting the 
2-rnaximal elements from set AC(S) until AC(S) = 0, we finally obtain 
f (as + (1 - a)S1) > a f (S) + (1 - a) f (S') for any a E [ O , l ] ,  which pro- 
vidcs thc concavity of f on cqual-order sets. 0 

By transformation from 3-PARTITION, Neumann ct al. (2003b), Sect. 3.4, 
havc shown that finding a time-feasible schedule with minimum total squared 
utilization cost is NP-hard. 

Now let t l  < . .  . < t,, denote the start and completion times of real 
activities i E V a .  Any jump discontinuity in loading profiles rk(S, .) for k E R P  

occurs at some start or completion time t ,  where 1 < p < V. A further 
resource-levelling objective function that has been studied in literature is the 
total adjustment cost for renewable resources 

where to := -1 and ck E Z>o is the cost arising from increasing or decreasing 
the availability of resource E RP by one unit (see, e.g., Younis and Saad 1996 
or Ncumann and Zimmermann 2000). Note that since rk(S, to) = rk(S,  t,,) = O 

for all k E RP, f (S) equals 2 ck CE=l[~lc(S, t p )  - rk(S, tPpl)]+. Thus, 
the case where decreasing the availability of (certain) resources does not incur 
additional cost is contained in the total adjustment cost problem. The total 
adjustment cost coincides with the weighted sum of the total variations of the 
loading profiles rk (S, . ) . 

Proposition 2.35. The total adjustment cost f is a lo,wer semicontinuous 
and locally concave objective function. 

Proof. Apparently, f (S) can be expressed as a function of all pairs (i, j) E B(S) 
for which the precedence constraints Sj 2 Si +pi  are active. Consequently, f 
is constant on the relative interior of any face of an equal-order set. Moreover, 
it is casily seen that for any such face, the objective function values of relative 
boundary points are less than or equal to the objective function values of 
corresponding relative interior points. Hence, f is concave on equal-order sets 
and lower scmicontinuous. 0 

Finally, wc notice that in contrast to thc total procurerrlent and total 
squared utilization costs, f is in gcncral not continuous on equal-order sets. 
In Neumanrl et al. (2003b), Sect. 3.4, it is shown by the same polynornial 
transformation from 3-PARTITION as for the total squared utilization cost 
that minimizing the total adjustment cost on sct ST is NP-hard as well. 
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2.3.3 Preorder-Decreasing Objective Functions 

In ccrtain cascs, the number of schedules to be enurncrated for minimizing 
a locally regular or a locally concavc objcctive function can be decreased by 
restricting the search to schedules inducing a maximum nurnbcr of prcccdence 
relationships. 

Definition 2.36 (Preorder-decreasing objective function). An objec- 
tive function f is  called preorder-decreasing if 19' > Q implies infsrs,=(e,l f (S) 5 
infsEsF(e) f (S) for all schedule-induced preorders 0 and 8'. 

It follows from the definition of preordcr-dccrcasing objcctive functions 
that, if S # 0, such functions possess a minimizer on some schedule polytope 
belonging to an &-maximal schedule-induced prcordcr. Thc total procurement 
cost is an example of a preorder-decreasing objective function, as has already 
bccn noticed by Mijhring (1984). As an alternative to thc construction of 
spanning trees (see preccding Subsection 2.3.2), a preorder-decreasing locally 
regular or locally concave objective function can be minimized on S by gener- 
ating thc set of &-maximal feasible schedule-induced prcordcrs. Nubel (1999) 
has proposed a branch-and-bound algorithm for the rcsource investment prob- 
lem that is implicitly based on this concept. The approach generally provcs 
advantageous if the minimization of the objective function on cqual-preorder 
scts already constitutes an NP-hard problem (which in particular may be the 
case for locally concave objective functions) because only the verticcs of thc 
generated &-minimal schedule polytopes have to be investigated. 

In conclusion, Table 2.1 summarizcs the relationships between the different 
classes of objective functions introduced and the sets of candidate schedules 
discusscd in Section 2.2. 

Table 2.1. Objective functions f and minimizers on S 

Objective function Minimizer 
Regular Minimal point of S 
Convexifiable Local minimizer on C-max. relation polytope ST(p)  2 S 
Locally regular Minimal point of schedule polytope ST(B(S))  C S 

Locally concave Vertex of schedule polytopes ST(B(S))  C S 
Preorder-decreasing Minimal point of c-minimal schedule polytopes 
locally regular 0 + s~(Q(s)) c s 
Preorder-decreasing Vertex of &-minimal schedule polytopes 
locally concave 0 # ST(Q(S)) S 


